在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法...在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。展开更多
针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造...针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造成的保留图像细节与去除噪声之间的平衡性问题;其次将改进的MB-LBP特征与梯度方向直方图(HOG)特征线性加权得到融合特征,弥补MB-LBP特征没有表征缺陷边缘和方向的缺点,从而更全面地表征复杂的缺陷纹理;最后通过同时增加全局信息和监督信息改善的局部保持投影(LPP)算法将高维的融合特征非线性映射到低维的本质特征空间中,减少融合特征冗余对分类器识别率的影响。在NEU数据集上仿真实验结果表明:算法对光照变化、纹理复杂多样、以及噪声具有一定的鲁棒性,在信噪比为50 d B情况下将带钢表面缺陷识别准确率提高了5. 17%。展开更多
针对不可控条件对人脸识别的影响,提出一种基于多尺度分块局部二值模式(Multi-scale Block Local Binary Patterns,MB-LBP)和Fisherfaces融合的人脸识别算法。采用适当模块大小的MB-LBP算子提取图像的纹理结构信息,得到相应的特征直方图...针对不可控条件对人脸识别的影响,提出一种基于多尺度分块局部二值模式(Multi-scale Block Local Binary Patterns,MB-LBP)和Fisherfaces融合的人脸识别算法。采用适当模块大小的MB-LBP算子提取图像的纹理结构信息,得到相应的特征直方图;通过Fisherfaces方法对MB-LBP提取的特征进行降维和分类;经由最近邻方法进行匹配识别。在ORL和Yale人脸库上进行实验,分别与其他基于LBP和MB-LBP算法的识别效果进行比对。实验结果表明,识别效率显著提高,鲁棒性更好。展开更多
文摘在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。
文摘针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造成的保留图像细节与去除噪声之间的平衡性问题;其次将改进的MB-LBP特征与梯度方向直方图(HOG)特征线性加权得到融合特征,弥补MB-LBP特征没有表征缺陷边缘和方向的缺点,从而更全面地表征复杂的缺陷纹理;最后通过同时增加全局信息和监督信息改善的局部保持投影(LPP)算法将高维的融合特征非线性映射到低维的本质特征空间中,减少融合特征冗余对分类器识别率的影响。在NEU数据集上仿真实验结果表明:算法对光照变化、纹理复杂多样、以及噪声具有一定的鲁棒性,在信噪比为50 d B情况下将带钢表面缺陷识别准确率提高了5. 17%。
文摘针对不可控条件对人脸识别的影响,提出一种基于多尺度分块局部二值模式(Multi-scale Block Local Binary Patterns,MB-LBP)和Fisherfaces融合的人脸识别算法。采用适当模块大小的MB-LBP算子提取图像的纹理结构信息,得到相应的特征直方图;通过Fisherfaces方法对MB-LBP提取的特征进行降维和分类;经由最近邻方法进行匹配识别。在ORL和Yale人脸库上进行实验,分别与其他基于LBP和MB-LBP算法的识别效果进行比对。实验结果表明,识别效率显著提高,鲁棒性更好。