随着区块链技术的不断发展,作为区块链技术基石的共识技术受到更多关注,共识技术的发展越发迅速,但依旧存在相关难题。容错类共识算法作为区块链共识技术的代表性之一,依然存在诸多难题待研究,针对容错类共识算法中节点随机性和节点共...随着区块链技术的不断发展,作为区块链技术基石的共识技术受到更多关注,共识技术的发展越发迅速,但依旧存在相关难题。容错类共识算法作为区块链共识技术的代表性之一,依然存在诸多难题待研究,针对容错类共识算法中节点随机性和节点共谋攻击问题进行了研究,提出基于博弈论抗共谋攻击的全局随机化共识算法,通过实现节点的随机化和解决相关安全问题提高区块链网络的安全性和吞吐量。在选择参与容错类共识算法的节点过程中,利用映射函数和加权随机函数实现发起者和验证者节点的全局随机化,从而保证发起者和验证者节点的身份匿名,提高区块链网络的安全性。利用信誉更新模型实现信誉动态更新的同时利用博弈论分析容错类共识算法的安全问题,构造更加正确和高效的算法模型以提高算法的吞吐量并分析发现这类算法中存在超过1/3节点的共谋攻击问题,利用精炼贝叶斯博弈构造共谋合约,分析求得共谋者之间的纳什均衡点,从而解决超过1/3节点的共谋攻击问题。通过安全性分析和实验表明,基于博弈论抗共谋攻击的全局随机化共识算法相对工作量证明(PoW,proof of work)、权益证明(PoS,proof of stake)和实用拜占庭容错(PBFT,practical Byzantine fault tolerance)共识算法不仅提高吞吐量、降低计算资源消耗,而且该算法抵抗分布式拒绝服务(DDoS,distributed denial of service)、Eclipse attacks和超过1/3节点共谋攻击。展开更多
文摘随着区块链技术的不断发展,作为区块链技术基石的共识技术受到更多关注,共识技术的发展越发迅速,但依旧存在相关难题。容错类共识算法作为区块链共识技术的代表性之一,依然存在诸多难题待研究,针对容错类共识算法中节点随机性和节点共谋攻击问题进行了研究,提出基于博弈论抗共谋攻击的全局随机化共识算法,通过实现节点的随机化和解决相关安全问题提高区块链网络的安全性和吞吐量。在选择参与容错类共识算法的节点过程中,利用映射函数和加权随机函数实现发起者和验证者节点的全局随机化,从而保证发起者和验证者节点的身份匿名,提高区块链网络的安全性。利用信誉更新模型实现信誉动态更新的同时利用博弈论分析容错类共识算法的安全问题,构造更加正确和高效的算法模型以提高算法的吞吐量并分析发现这类算法中存在超过1/3节点的共谋攻击问题,利用精炼贝叶斯博弈构造共谋合约,分析求得共谋者之间的纳什均衡点,从而解决超过1/3节点的共谋攻击问题。通过安全性分析和实验表明,基于博弈论抗共谋攻击的全局随机化共识算法相对工作量证明(PoW,proof of work)、权益证明(PoS,proof of stake)和实用拜占庭容错(PBFT,practical Byzantine fault tolerance)共识算法不仅提高吞吐量、降低计算资源消耗,而且该算法抵抗分布式拒绝服务(DDoS,distributed denial of service)、Eclipse attacks和超过1/3节点共谋攻击。