We analyze the consistency of the coupled atmosphere-ocean GISS-ER climate model in reproducing South American temperature anomalies over the last millennium. For that purpose, we compare the model results with the Ne...We analyze the consistency of the coupled atmosphere-ocean GISS-ER climate model in reproducing South American temperature anomalies over the last millennium. For that purpose, we compare the model results with the Neukom’s temperature anomaly reconstruction provided by a statistical model that uses multiproxy data and climatological temperature anomalies. Specifically, we examine temperature anomalies for summer and winter of a 6-member ensemble of the GISS-ER model with 1× solar forcing and 2× solar forcing, calculated for the period 1000-1899. Using the Neukom’s reconstructions and the model outputs, we calculate the summer mean anomalies of the period 1001-1700 (a period that includes Medieval Climate Anomaly -MCA- and Little Ice Age -LIA-), and winter mean anomalies of the period 1706-1800 (a period that includes the pre-industrial period). These mean anomalies are subtracted from Neukom’s reconstructions defining the reconstructions wrt 1001-1700 (summer) and wrt 1706-1800 (summer and winter). In general, the model is not very consistent with the reconstructions, since the model’s mean and spread show very small interannual variability in contrast to what the reconstructions exhibit, and often with anomalies of opposite sign. In the period 1001-1700, the model presents, on average, negative temperature anomalies for the 1× and 2× forcing. In the period 1706-1800, the model displays positive anomalies for summer and negative anomalies for winter for the 1× and 2× forcing. In particular, the anomaly that better reproduces the sign of the reconstructions is that wrt 1001-1700 with 1× forcing and for summer. The model has an error of only 33% in reproducing the sign of the anomalies, in comparison to the Neukom’s reconstruction for the same reference period. The model’s anomaly wrt 1001-1700 with 1× forcing for summer also reproduces the MCA and LIA’s sign of the reconstruction. The MCA’s sign is reproduced in almost 75% of the comparisons, and the LIA’s sign in more than 73% of the comparisons with the reconstruction, indicating that the model can represent this important anomalies.展开更多
Edku Lake, the third largest in the system of the northern coastal wetlands in Egypt, situated on the west part of Nile Delta, is considered as an important fishing area in Egypt. The lake suffers from high levels of ...Edku Lake, the third largest in the system of the northern coastal wetlands in Egypt, situated on the west part of Nile Delta, is considered as an important fishing area in Egypt. The lake suffers from high levels of aquatic vegetation and from the expansion in fish farming and agricultural discharges. To solve lake water quality problems, the study aims to develop the multi-criteria analysis (MCA) framework capable of evaluating the proposed lake water quality improvement scenarios. The work tasks were divided into two phases. In the first phase, many proposed scenarios involved on primary, secondary, surface wetland, biological biofilm, and adding a new artificial inlet were proposed by applying Surface-water Modeling System (SMS) with two dimensional hydrodynamic. The second phase involved in developing the required hierarchical MCA based on an integrated technical, environmental, economic and socio-community indicators. The main results of MCA showed that the water quality management scenario focusing on combination of applying biological biofilm technique for drain effluents and also adding a new artificial inlet at the northern lake region can represent the optimum scenario for solving the lake water quality problems.展开更多
文摘We analyze the consistency of the coupled atmosphere-ocean GISS-ER climate model in reproducing South American temperature anomalies over the last millennium. For that purpose, we compare the model results with the Neukom’s temperature anomaly reconstruction provided by a statistical model that uses multiproxy data and climatological temperature anomalies. Specifically, we examine temperature anomalies for summer and winter of a 6-member ensemble of the GISS-ER model with 1× solar forcing and 2× solar forcing, calculated for the period 1000-1899. Using the Neukom’s reconstructions and the model outputs, we calculate the summer mean anomalies of the period 1001-1700 (a period that includes Medieval Climate Anomaly -MCA- and Little Ice Age -LIA-), and winter mean anomalies of the period 1706-1800 (a period that includes the pre-industrial period). These mean anomalies are subtracted from Neukom’s reconstructions defining the reconstructions wrt 1001-1700 (summer) and wrt 1706-1800 (summer and winter). In general, the model is not very consistent with the reconstructions, since the model’s mean and spread show very small interannual variability in contrast to what the reconstructions exhibit, and often with anomalies of opposite sign. In the period 1001-1700, the model presents, on average, negative temperature anomalies for the 1× and 2× forcing. In the period 1706-1800, the model displays positive anomalies for summer and negative anomalies for winter for the 1× and 2× forcing. In particular, the anomaly that better reproduces the sign of the reconstructions is that wrt 1001-1700 with 1× forcing and for summer. The model has an error of only 33% in reproducing the sign of the anomalies, in comparison to the Neukom’s reconstruction for the same reference period. The model’s anomaly wrt 1001-1700 with 1× forcing for summer also reproduces the MCA and LIA’s sign of the reconstruction. The MCA’s sign is reproduced in almost 75% of the comparisons, and the LIA’s sign in more than 73% of the comparisons with the reconstruction, indicating that the model can represent this important anomalies.
文摘Edku Lake, the third largest in the system of the northern coastal wetlands in Egypt, situated on the west part of Nile Delta, is considered as an important fishing area in Egypt. The lake suffers from high levels of aquatic vegetation and from the expansion in fish farming and agricultural discharges. To solve lake water quality problems, the study aims to develop the multi-criteria analysis (MCA) framework capable of evaluating the proposed lake water quality improvement scenarios. The work tasks were divided into two phases. In the first phase, many proposed scenarios involved on primary, secondary, surface wetland, biological biofilm, and adding a new artificial inlet were proposed by applying Surface-water Modeling System (SMS) with two dimensional hydrodynamic. The second phase involved in developing the required hierarchical MCA based on an integrated technical, environmental, economic and socio-community indicators. The main results of MCA showed that the water quality management scenario focusing on combination of applying biological biofilm technique for drain effluents and also adding a new artificial inlet at the northern lake region can represent the optimum scenario for solving the lake water quality problems.