期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于MODIS数据的典型草原非光合植被覆盖度估算 被引量:6
1
作者 柴国奇 王静璞 +2 位作者 王光镇 韩柳 王周龙 《国土资源遥感》 CSCD 北大核心 2019年第3期234-241,共8页
非光合植被(non-photosynthetic vegetation,NPV)在草原生态系统中扮演了重要角色,影响着生态系统的碳、水和能量的流动与循环。定量掌握草原非光合植被覆盖度(fractional cover of non-photosynthetic vegetation,fNPV)信息对草地资源... 非光合植被(non-photosynthetic vegetation,NPV)在草原生态系统中扮演了重要角色,影响着生态系统的碳、水和能量的流动与循环。定量掌握草原非光合植被覆盖度(fractional cover of non-photosynthetic vegetation,fNPV)信息对草地资源的科学有效利用以及生态环境保护具有重要意义。以内蒙古自治区锡林郭勒典型草原为研究区,运用线性回归分析方法,建立基于MODIS (MCD43A4)数据构建的多种非光合植被指数(non-photosynthetic vegetation indices,NPVIs)和野外实测fNPV数据的反演模型,并对模型的估算结果进行验证。研究结果表明,基于MODIS数据构建的NPVIs与fNPV的相关性较好,相关性依次为: DFI,SWIR32,NDTI,STI,NDI7,NDI5及NDSVI;DFI指数反演fNPV模型的估算精度较高,可用于典型草原地区大范围fNPV的快速监测。 展开更多
关键词 mcd43a4 非光合植被 非光合植被指数 典型草原
下载PDF
Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico
2
作者 AGUIRRE-SALADO Carlos Arturo TREVINO-GARZA Eduardo Javier +5 位作者 AGUIRRE-CALDERON Oscar Alberto JIMENEZ-PiEREZ Javier GONZALEZ-TAGLE Marco Aurelio VALDEZ-LAZALDE Jose Rene M IRANDA-ARAGON Liliana AGUIRRE-SALADO Alejandro lvan 《Journal of Geographical Sciences》 SCIE CSCD 2012年第4期669-680,共12页
Spatially-explicit estimation of aboveground biomass (AGB) plays an important role to generate action policies focused in climate change mitigation, since carbon (C) retained in the biomass is vital for regulating... Spatially-explicit estimation of aboveground biomass (AGB) plays an important role to generate action policies focused in climate change mitigation, since carbon (C) retained in the biomass is vital for regulating Earth's temperature. This work estimates AGB using both chlorophyll (red, near infrared) and moisture (middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer (MODIS) and MOD44B vegetation continuous fields (VCF) data. The study area is located in San Luis Potosi, Mexico, a region that comprises a part of the upper limit of the intertropical zone. AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature. Linear and nonlinear (expo- nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables. Highly-significant correlations (p = 0.01 ) were found between all the explaining variables tested. NDVI62, linked to chlorophyll content and moisture stress, showed the highest correlation. The best model (nonlinear) showed an index of fit (Pseudo - r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables. Validation correlation coefficients were similar for both models: linear (r = 0.87**) and nonlinear (r = 0.86**). 展开更多
关键词 MODIS mcd43a4 MOD44B forest inventory regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部