Objective: hER-α36 is a variant of estrogen receptor-a, identified and cloned by a team of American. This research is to determine whether hER-α36 can enhance or weaken chemosensitivity to docetaxel in breast cance...Objective: hER-α36 is a variant of estrogen receptor-a, identified and cloned by a team of American. This research is to determine whether hER-α36 can enhance or weaken chemosensitivity to docetaxel in breast cancer cell line MCF-7(ERα66 positive). Methods: RT-PCR was used to detect the expressions of ERα66 and ERa36 in the two human breast cancer cell lines MCF-7(MCF-7/ERα66) and MCF-7 transfected with ERa36(MCF-7/ERα36). The two cell lines were treated with docetaxel(0-100umol/L), and cell growth and apoptosis were evaluated using MTT (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide) assay (using adriamycin (0-50umol/L) as the control) and flowcytometry. Western blot analysis was used to measure the effect of docetaxel on phosphor-ERKl/2 expression in the two cell lines. Results: The expressions of ERct36 and ERα66 were detectable in both MCF-7/ERα66 and MCF-7/ERα36 cell lines, while the expression of ERα36 in MCF-7/ER36 cells was higher. Both docetaxel and adriamycin inhibited the proliferation of both cells lines in a dose and time dependent manner. In comparison with MCF-7/ERα36 cell line, the MCF-7/ERα66 cells produced greater growth inhibition and apoptosis after treatment with docetaxel, but there was no significant difference in growth inhibition between the two cell lines treated with adriamycin; The MCF-7/ERα36 cell line resulted in a significant activation (phosphorylation) of ERK1/2 after treatment with docetaxel in a dose-dependent manner, but in the MCF-7/ERα66 cell line , a decrease in the level of phosphor- ERK1/2 expression was observed as the dose of docetaxel increased. Conclusion: ERa36 may be an agent that weakens chemosensitivity to docetaxel in breast cancer, probably by activating the expression of ERKI/2.展开更多
Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell ...Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).展开更多
文摘Objective: hER-α36 is a variant of estrogen receptor-a, identified and cloned by a team of American. This research is to determine whether hER-α36 can enhance or weaken chemosensitivity to docetaxel in breast cancer cell line MCF-7(ERα66 positive). Methods: RT-PCR was used to detect the expressions of ERα66 and ERa36 in the two human breast cancer cell lines MCF-7(MCF-7/ERα66) and MCF-7 transfected with ERa36(MCF-7/ERα36). The two cell lines were treated with docetaxel(0-100umol/L), and cell growth and apoptosis were evaluated using MTT (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide) assay (using adriamycin (0-50umol/L) as the control) and flowcytometry. Western blot analysis was used to measure the effect of docetaxel on phosphor-ERKl/2 expression in the two cell lines. Results: The expressions of ERct36 and ERα66 were detectable in both MCF-7/ERα66 and MCF-7/ERα36 cell lines, while the expression of ERα36 in MCF-7/ER36 cells was higher. Both docetaxel and adriamycin inhibited the proliferation of both cells lines in a dose and time dependent manner. In comparison with MCF-7/ERα36 cell line, the MCF-7/ERα66 cells produced greater growth inhibition and apoptosis after treatment with docetaxel, but there was no significant difference in growth inhibition between the two cell lines treated with adriamycin; The MCF-7/ERα36 cell line resulted in a significant activation (phosphorylation) of ERK1/2 after treatment with docetaxel in a dose-dependent manner, but in the MCF-7/ERα66 cell line , a decrease in the level of phosphor- ERK1/2 expression was observed as the dose of docetaxel increased. Conclusion: ERa36 may be an agent that weakens chemosensitivity to docetaxel in breast cancer, probably by activating the expression of ERKI/2.
基金This work was supported by the National Natural Science Foundation of China(No.39870661). Phone: (0086-451)-3641309 Fax: (0086-451)-3641253
文摘Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).