Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat...Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution.展开更多
针对无线传感器网络(WSN)中的移动节点定位问题,提出了一种将反馈时间序列与蒙特卡洛相结合的定位算法TSMCL(Feedback Time Series-Based Monte Carlo)。该算法基于目标节点1跳范围内的邻居锚节点(至少3个)反馈信号的先后顺序,构建了节...针对无线传感器网络(WSN)中的移动节点定位问题,提出了一种将反馈时间序列与蒙特卡洛相结合的定位算法TSMCL(Feedback Time Series-Based Monte Carlo)。该算法基于目标节点1跳范围内的邻居锚节点(至少3个)反馈信号的先后顺序,构建了节点可能的初始采样区域R1,并以区域R1与蒙特卡洛采样区域R2的重叠区作为新的采样区域R,以进一步缩小采样范围、提高采样效率。仿真结果表明:与蒙特卡洛定位算法相比,提出的TSMCL算法能够减少约38%的定位误差,尤其当节点移动速度较高时,算法的收敛速度也得到了显著提升。展开更多
文摘Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution.
文摘针对无线传感器网络(WSN)中的移动节点定位问题,提出了一种将反馈时间序列与蒙特卡洛相结合的定位算法TSMCL(Feedback Time Series-Based Monte Carlo)。该算法基于目标节点1跳范围内的邻居锚节点(至少3个)反馈信号的先后顺序,构建了节点可能的初始采样区域R1,并以区域R1与蒙特卡洛采样区域R2的重叠区作为新的采样区域R,以进一步缩小采样范围、提高采样效率。仿真结果表明:与蒙特卡洛定位算法相比,提出的TSMCL算法能够减少约38%的定位误差,尤其当节点移动速度较高时,算法的收敛速度也得到了显著提升。