A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being high...A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.展开更多
The antioxidant enzyme activity and malondialdehyde(MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress.Worm...The antioxidant enzyme activity and malondialdehyde(MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress.Worms were exposed to copper,zinc and cadmium solutions at different concentrations,and the activity of three antioxidant enzymes,catalase(CAT),superoxide dismutase(SOD),and glutathione peroxidase(GPX),and MDA content were measured.The results show that the activity of each enzyme changed immediately after exposure to heavy metals.CAT was invariably inhibited throughout the experimental period,while the SOD activity was significantly elevated by exposure to Cu^(2+) for 48h,but then decreased.SOD was inhibited by Zn^(2+) during the first 12h of exposure,but activated when exposed for longer periods.Under Cd^(2+) stress,SOD activity decreased within 72h.GPX activity varied greatly,being significantly increased by both Cu^(2+) and Zn^(2+),but significantly inhibited by Cd^(2+) in the first 12-24h after exposure.MDA content increased on Cu^(2+) exposure,but normally decreased on Zn^(2+) exposure.MDA content followed an increase-decrease-increase pattern under Cd^(2+) stress.In conclusion,the antioxidant system of this nemertean is sensitive to heavy metals,and its CAT activity may be a potential biomarker for monitoring heavy metal levels in the environment.展开更多
Jatropha curcas was taken as the test material,6 concentrations including 0,25,50,100,200 and 400μmol/L AlCl3,plus 3 time gradients including 7,14 and 21 d,were set to study the effects of Al^(3+)stress on the antiox...Jatropha curcas was taken as the test material,6 concentrations including 0,25,50,100,200 and 400μmol/L AlCl3,plus 3 time gradients including 7,14 and 21 d,were set to study the effects of Al^(3+)stress on the antioxidant system of Jatropha curcas L.seedling.The results showed that with the Al^(3+)treatment being applied,protein content increased first,then decreased and finally increased with the increase of Al^(3+)concentration;the soluble sugar content increased first and then decreased with the increase of Al^(3+)concentration.Under low concentration of Al^(3+)treatment,Pro content,MDA content and POD activity of Jatropha curcas L.seedling leaves changed a little,while under high concentration of Al^(3+)treatment,Pro and MDA content of Jatropha curcas L.seedling leaves rapidly accumulated,POD activity increased and they showed a trend of increase with the increase of Al^(3+)concentration;From the perspective of Al^(3+)stress time,protein content,soluble sugar content,MDA content and POD activity increased with stress time being prolonged,while Pro content decreased with stress time being prolonged.These results indicated that the leaves of Jatropha curcas L.seedlings had certain self-protection and remediation abilities under Al^(3+)stress.展开更多
Abstract [Objective] This study was conducted to evaluate the ecotoxicity of boscalid to adult zebrafish (Danio rerio). [Method] The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ...Abstract [Objective] This study was conducted to evaluate the ecotoxicity of boscalid to adult zebrafish (Danio rerio). [Method] The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), as well as a non-enzymatic antioxidant malondialdehyde (MDA), in the liver were measured 3, 7, 14 and 21 d post exposure (dpe) to 0.02 (1/100 of acute toxicity), 0.036 (monitored concentration), 0.08 (1/20 of acute toxicity), 0.16 (1/10 of acute toxicity) and 0.32 mg/L (1/5 of acute toxicity) boscalid using a semi-static method. [Result] SOD, CAT, POD, GPx and MDA activity in the liver of zebrafish varied with boscalid concentration and exposure time. Boscalid significantly enhanced MDA content at 21 dpe. A significant upregulation of the activity of SOD, CAT, POD and GPx at 7 dpe was observed, suggesting that boscalid resulted in oxidative stress and lipid peroxidation. [Conclusion] These results show that these biomarkers are all appropriate for monitoring oxidative stress and the lipid peroxidation status of fish after exposure to boscalid. Key words Boscalid; Zebrafish; Antioxidant enzyme展开更多
文摘A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.
基金Supported by the National Natural Science Foundation of China(No.30270235)
文摘The antioxidant enzyme activity and malondialdehyde(MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress.Worms were exposed to copper,zinc and cadmium solutions at different concentrations,and the activity of three antioxidant enzymes,catalase(CAT),superoxide dismutase(SOD),and glutathione peroxidase(GPX),and MDA content were measured.The results show that the activity of each enzyme changed immediately after exposure to heavy metals.CAT was invariably inhibited throughout the experimental period,while the SOD activity was significantly elevated by exposure to Cu^(2+) for 48h,but then decreased.SOD was inhibited by Zn^(2+) during the first 12h of exposure,but activated when exposed for longer periods.Under Cd^(2+) stress,SOD activity decreased within 72h.GPX activity varied greatly,being significantly increased by both Cu^(2+) and Zn^(2+),but significantly inhibited by Cd^(2+) in the first 12-24h after exposure.MDA content increased on Cu^(2+) exposure,but normally decreased on Zn^(2+) exposure.MDA content followed an increase-decrease-increase pattern under Cd^(2+) stress.In conclusion,the antioxidant system of this nemertean is sensitive to heavy metals,and its CAT activity may be a potential biomarker for monitoring heavy metal levels in the environment.
文摘Jatropha curcas was taken as the test material,6 concentrations including 0,25,50,100,200 and 400μmol/L AlCl3,plus 3 time gradients including 7,14 and 21 d,were set to study the effects of Al^(3+)stress on the antioxidant system of Jatropha curcas L.seedling.The results showed that with the Al^(3+)treatment being applied,protein content increased first,then decreased and finally increased with the increase of Al^(3+)concentration;the soluble sugar content increased first and then decreased with the increase of Al^(3+)concentration.Under low concentration of Al^(3+)treatment,Pro content,MDA content and POD activity of Jatropha curcas L.seedling leaves changed a little,while under high concentration of Al^(3+)treatment,Pro and MDA content of Jatropha curcas L.seedling leaves rapidly accumulated,POD activity increased and they showed a trend of increase with the increase of Al^(3+)concentration;From the perspective of Al^(3+)stress time,protein content,soluble sugar content,MDA content and POD activity increased with stress time being prolonged,while Pro content decreased with stress time being prolonged.These results indicated that the leaves of Jatropha curcas L.seedlings had certain self-protection and remediation abilities under Al^(3+)stress.
文摘Abstract [Objective] This study was conducted to evaluate the ecotoxicity of boscalid to adult zebrafish (Danio rerio). [Method] The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), as well as a non-enzymatic antioxidant malondialdehyde (MDA), in the liver were measured 3, 7, 14 and 21 d post exposure (dpe) to 0.02 (1/100 of acute toxicity), 0.036 (monitored concentration), 0.08 (1/20 of acute toxicity), 0.16 (1/10 of acute toxicity) and 0.32 mg/L (1/5 of acute toxicity) boscalid using a semi-static method. [Result] SOD, CAT, POD, GPx and MDA activity in the liver of zebrafish varied with boscalid concentration and exposure time. Boscalid significantly enhanced MDA content at 21 dpe. A significant upregulation of the activity of SOD, CAT, POD and GPx at 7 dpe was observed, suggesting that boscalid resulted in oxidative stress and lipid peroxidation. [Conclusion] These results show that these biomarkers are all appropriate for monitoring oxidative stress and the lipid peroxidation status of fish after exposure to boscalid. Key words Boscalid; Zebrafish; Antioxidant enzyme