The foaming phenomenon of N-methyldiethanolamine(MDEA) solution used in desulfurization process occurs frequently in the natural-gas purification plant. The foaming phenomenon has a strong impact on operation of the p...The foaming phenomenon of N-methyldiethanolamine(MDEA) solution used in desulfurization process occurs frequently in the natural-gas purification plant. The foaming phenomenon has a strong impact on operation of the process unit. The salt impurities are the main reason for causing the foaming of MDEA solution, so the full analysis of salt impurities is necessary. A method for comprehensive analysis of salt impurities in MDEA solution used in desulfurization process was established. Anions and non-metallic cations of MDEA solution were determined by different conditions of ion chromatograph, respectively. Metallic cations of the solution were detected by atomic absorption spectrophotometer with the N2O-C2H2 flame absorption. The analytical results of salt impurities in the desulfurization solution can provide a theoretical basis for an accurate analysis of the factors affecting the foaming of MDEA to unveil further control measures.展开更多
Absorption rate of CO2 into aqueous solution of N-methyldiethanolamine (MDEA) blended with diethanolamine (DEA) and piperazine (PZ) was studied and a kinetic model was established. It is shown that homogeneous activat...Absorption rate of CO2 into aqueous solution of N-methyldiethanolamine (MDEA) blended with diethanolamine (DEA) and piperazine (PZ) was studied and a kinetic model was established. It is shown that homogeneous activation mechanism could explain this absorption process. The absorption rate coefficients of carbon dioxide into MDEA aqueous solution blended with DEA, PZ or DEA+PZ were compared with each other. The results demonstrated that the different activation effect of DEA, PZ and DEA+PZ on the carbon dioxide absorption comes from the difference in CO2 combination rate, transport of PZ and DEA to MDEA and the regeneration rate of PZ and DEA.展开更多
基金Financial support received from the Major National Science and Technology Projects of China (No. 2011ZX05017)SWPU Science & Technology Innovation Youth Team for Pollution Control of Oil & Gas Fields (No. 2013XJZT003)
文摘The foaming phenomenon of N-methyldiethanolamine(MDEA) solution used in desulfurization process occurs frequently in the natural-gas purification plant. The foaming phenomenon has a strong impact on operation of the process unit. The salt impurities are the main reason for causing the foaming of MDEA solution, so the full analysis of salt impurities is necessary. A method for comprehensive analysis of salt impurities in MDEA solution used in desulfurization process was established. Anions and non-metallic cations of MDEA solution were determined by different conditions of ion chromatograph, respectively. Metallic cations of the solution were detected by atomic absorption spectrophotometer with the N2O-C2H2 flame absorption. The analytical results of salt impurities in the desulfurization solution can provide a theoretical basis for an accurate analysis of the factors affecting the foaming of MDEA to unveil further control measures.
文摘Absorption rate of CO2 into aqueous solution of N-methyldiethanolamine (MDEA) blended with diethanolamine (DEA) and piperazine (PZ) was studied and a kinetic model was established. It is shown that homogeneous activation mechanism could explain this absorption process. The absorption rate coefficients of carbon dioxide into MDEA aqueous solution blended with DEA, PZ or DEA+PZ were compared with each other. The results demonstrated that the different activation effect of DEA, PZ and DEA+PZ on the carbon dioxide absorption comes from the difference in CO2 combination rate, transport of PZ and DEA to MDEA and the regeneration rate of PZ and DEA.