A quantative relationship exists between the structrue and physical properties of organic compounds.The molecular structrue of the examined compounds is selectively described by a molecular distance-edge(MDE)vector....A quantative relationship exists between the structrue and physical properties of organic compounds.The molecular structrue of the examined compounds is selectively described by a molecular distance-edge(MDE)vector.The physical properties of alkanes such as boiling points,density at 25℃,refractive index at 25℃, heat capacity at 300K,Gibbs energy,enthalpy at 300K are estimated with satisfactory results by a novel modified back- propagation neural network method based on the above MDEvectot.展开更多
Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
Recently,the ontological metamodel plays an increasingly important role to specify systems in two forms:ontology and metamodel.Ontology is a descriptive model representing reality by a set of concepts,their interrelat...Recently,the ontological metamodel plays an increasingly important role to specify systems in two forms:ontology and metamodel.Ontology is a descriptive model representing reality by a set of concepts,their interrelations,and constraints.On the other hand,metamodel is a more classical,but more powerful model in which concepts and relationships are represented in a prescriptive way.This study firstly clarifies the difference between the two approaches,then explains their advantages and limitations,and attempts to explore a general ontological metamodeling framework by integrating each characteristic,in order to implement semantic simulation model engineering.As a proof of concept,this paper takes the combat effectiveness simulation systems as a motivating case,uses the proposed framework to define a set of ontological composable modeling frameworks,and presents an underwater targets search scenario for running simulations and analyzing results.Finally,this paper expects that this framework will be generally used in other fields.展开更多
文摘A quantative relationship exists between the structrue and physical properties of organic compounds.The molecular structrue of the examined compounds is selectively described by a molecular distance-edge(MDE)vector.The physical properties of alkanes such as boiling points,density at 25℃,refractive index at 25℃, heat capacity at 300K,Gibbs energy,enthalpy at 300K are estimated with satisfactory results by a novel modified back- propagation neural network method based on the above MDEvectot.
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
基金the National Natural Science Foundation of China(61273198).
文摘Recently,the ontological metamodel plays an increasingly important role to specify systems in two forms:ontology and metamodel.Ontology is a descriptive model representing reality by a set of concepts,their interrelations,and constraints.On the other hand,metamodel is a more classical,but more powerful model in which concepts and relationships are represented in a prescriptive way.This study firstly clarifies the difference between the two approaches,then explains their advantages and limitations,and attempts to explore a general ontological metamodeling framework by integrating each characteristic,in order to implement semantic simulation model engineering.As a proof of concept,this paper takes the combat effectiveness simulation systems as a motivating case,uses the proposed framework to define a set of ontological composable modeling frameworks,and presents an underwater targets search scenario for running simulations and analyzing results.Finally,this paper expects that this framework will be generally used in other fields.