期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MDLatLRR和KPCA的光场图像全聚焦融合 被引量:2
1
作者 黄泽丰 杨莘 +1 位作者 邓慧萍 李青松 《光子学报》 EI CAS CSCD 北大核心 2023年第4期247-261,共15页
为了提升光场成像的空间分辨率,结合光场图像数字重聚焦与多聚焦图像融合,提出了一种基于多尺度潜在低秩分解和核主成分分析的光场图像全聚焦融合算法。首先,对光场图像进行数字重聚焦得到重聚焦图像,然后对各重聚焦图像进行多尺度分解... 为了提升光场成像的空间分辨率,结合光场图像数字重聚焦与多聚焦图像融合,提出了一种基于多尺度潜在低秩分解和核主成分分析的光场图像全聚焦融合算法。首先,对光场图像进行数字重聚焦得到重聚焦图像,然后对各重聚焦图像进行多尺度分解提取出基础层和显著层,对基础层、显著层分别采用局部梯度差值加权算法和多尺度梯度域显著性提取算法计算相应的特征系数;其次,联立基础层和各显著层的特征系数矩阵,然后用核主成分分析进行降维融合得到融合特征系数矩阵,使得经融合特征系数生成的聚焦决策图能充分考虑基础层和显著层的特征信息;最后,用聚焦决策图引导重聚焦图像进行全聚焦融合。实验结果表明,该算法与传统方法相比在视觉效果和边缘信息丰富度上具有更优表现,所生成的光场全聚焦图像具有更高的分辨率和更好的视觉效果。 展开更多
关键词 光场 全聚焦图像融合 数字重聚焦 多尺度潜在低秩分解 核主成分分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部