Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensi...Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.展开更多
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was in...Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.展开更多
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added ...Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.展开更多
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures i...In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.展开更多
This study aims at providing systematically insights to clarify the impact of cathodic polarization on the stress corrosion cracking(SCC)behavior of 21 Cr2 NiMo steel.Slow-strain-rate tensile tests demonstrated that 2...This study aims at providing systematically insights to clarify the impact of cathodic polarization on the stress corrosion cracking(SCC)behavior of 21 Cr2 NiMo steel.Slow-strain-rate tensile tests demonstrated that 21 Cr2 NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization.The lowest SCC susceptibility occurred at-775 mV vs.SCE,whereas the SCC susceptibility was remarkably higher at potentials below-950 mV vs.SCE.Scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)revealed that the cathodic potential decline caused a transition from transgranular to intergranular mode in the fracture path.The intergranular mode transformed from bainite boundaries separation to prior austenitic grain boundaries separation under stronger cathodic polarization.Furthermore,corrosion pits promoted the nucleation of SCC cracks.In conclusion,with the decrease in the applied potential,the SCC mechanism transformed from the combination of hydrogen embrittlement and anodic dissolution to typical hydrogen embrittlement.展开更多
Stress corrosion cracking (SCC) behavior of P 110 tubing steel in simulated C02 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements....Stress corrosion cracking (SCC) behavior of P 110 tubing steel in simulated C02 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements. The results demonstrate that SCC of P110 tubing steel could occur in acidulous simulated environment, and the sensitivity of SCC increases with the decrease ofpH, as well as increase of sulfide concentration and total environmental pressure. Both anodic dissolution and hydrogen embrittlement make contributions to the SCC. Adequate concentration of corrosion inhibitor can inhibit the occurrence of SCC on account of the inhibition of localized anodic dissolution and cathodic hydrogen evolution.展开更多
The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DC...The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DCB)specimens.The SCC morphology was observed by using scanning electron microscopy(SEM)and the composition of corrosion products was analyzed by using energy dispersive spectrometer(EDS).The results show that the crack propagates to bifurcation in NaCl and Na2SO4 solution,while the crack in Na2CO3 solution propagates along the load direction.The SCC rate in NaCl solution is the highest,while lower in Na2SO4 solution and little in Na2CO3 solution.From the SEM morphologies,quasi-cleavage fracture was observed in NaCl and Na2SO4 solutions,but intergranular features in Na2CO3 solution.The mechanism of anion effect on SCC of steel 23Co14Ni12Cr3Mo was studied by using full immersion test and electrochemical measurements.展开更多
The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the q...The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the quenching temperature raised from 870 to 1200℃ . All of the fractures are intergranular.The analyses of the segregation along prior austenitic grain boundaries,grain size and other microstructural factors reveal that the inerease of K_(ISCC) is mainly due to the coarsening of prior austenitic grains.展开更多
Specimens of AISI 321 stainless steel (0Cr18Ni9Ti) of various martensile contents were prepared by the low temperature(-70℃) elongation method- X-ray diffraction (XRD) and transmission electron micrograph (TEM) techn...Specimens of AISI 321 stainless steel (0Cr18Ni9Ti) of various martensile contents were prepared by the low temperature(-70℃) elongation method- X-ray diffraction (XRD) and transmission electron micrograph (TEM) techniques were used to study the phase transition process and its structure. The relationship between deformation-induced martensite and stress corrosion cracking (SCC) susceptibility of the steel in 42% (boiling) MgCl2 solution was investigated using the constant load SCC test with the normalized threshold values. The results reveal that when the α'-martensite content is less than 5% and also in the range of 15%-24 % , the SCC susceptibility of this material decreases with the increase of α'-martensite content.However. whenthe α' martensite content is in the rang of 5% -15% and more than 24%, the SCC susceptibility of this material increases with the increase of the α'-martensite content. The SCC fracture surface of the specimens exhibits a stepped fracture surface and transgranular stress corrosion fracture surface morphology.展开更多
SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a sho...SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a short time as a few hours or take years and decades to happen. Most alloys are liable to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are common to perform poorly. SCC of austenitic stainless steels of types 316 was investigated as a function of applied stress at room temperature in sodium chloride solutions using a constant load method. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of notched specimen. The stress depends on fracture appearance and parameters of time to cracking, and cracking growth. The results explained in terms of comparison between the two concentrations of sodium chloride solutions.展开更多
The SCC susceptibility of type 321 stainless steel in acidic chloride solution has been studied by slow strain rate testing (SSRT) and SEM. During the slow rate tensile process, the specimen was polarized with differe...The SCC susceptibility of type 321 stainless steel in acidic chloride solution has been studied by slow strain rate testing (SSRT) and SEM. During the slow rate tensile process, the specimen was polarized with different potential perturbation modes such as cyclic potential scan and cyclic potential step methods. The results indicated that the potential scan rate or step frequency played an essential role in the initiation and propagation of crack.展开更多
This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion...This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion cracking sus-ceptibility measurements were carried out in 52 Wt% ammonium nitrate solutions at 368° K and various pH values ranging from 0.77 to 9.64. Constant load stress corrosion test at 90% yield stress was conducted. Tested specimens were prepared and examined using the scanning electron microscope (SEM). The potentiodynamic polarization curves for different pH values again emphasized the validity of the gravimetric measurements and hence the mechanism of cracking was attributed to the stress that assisted the dissolution process.展开更多
The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic seawaer was studied by slow strain rate (SSR) technique and fracture method. The fractured surface was characterzed by cleavage fracture. The i...The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic seawaer was studied by slow strain rate (SSR) technique and fracture method. The fractured surface was characterzed by cleavage fracture. The inhibiting effects of KI on SCC behavior were also covered in this detailed study which showed that they were meinly attributable to their inhibition on anodic reaction. The SCC mechanism study supported the unified mechanism of SCC and corrosion fatigue cracking (CFC).展开更多
The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cr...The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.展开更多
The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease...The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration.展开更多
980 high-strength steel has been widely used in marine engineering structures due to its high strength and toughness.However,it is easily affected by the harsh environmental conditions(such as the presence of sulfate-...980 high-strength steel has been widely used in marine engineering structures due to its high strength and toughness.However,it is easily affected by the harsh environmental conditions(such as the presence of sulfate-reducing bacteria,SRB),leading to the risk of stress corrosion cracking(SCC).In this paper,the effects of SRB and its metabolites on hydrogen permeation and SCC mechanism of 980 steel in seawater solution were investigated by slow strain rate tensile test,scanning electron microscope,Xray energy spectroscopy,Raman spectroscopy and Devanathan-Stachurski double electrolytic cell.Results demonstrated that the SCC susceptibility of 980 steel was promoted in the presence of SRB,which was related to the cultivation time of the bacteria.When SRB were cultivated for 3 d and 6 d,the SCC mechanism was controlled by hydrogen-induced cracking(HIC);while the cultivation time extended to 11 d,the SCC of 980 steel was under the combined effect of the anodic dissolution(AD) and HIC mechanism.When cultivated for 16 d,the SCC of 980 steel was caused by the dominant AD.Both the SRB accelerated hydrogen permeation under cathodic depolarization process and SRB assisted AD(pitting corrosion)played an enhancing role in promoting SCC susceptibility of 980 steel.展开更多
The effect of clad metal composition on stress corrosion cracking (SCC) behavior of three types of SMAW filler metals (E308L-16, E309-16 and E316L-16), used for cladding components subjected to highly corrosive condit...The effect of clad metal composition on stress corrosion cracking (SCC) behavior of three types of SMAW filler metals (E308L-16, E309-16 and E316L-16), used for cladding components subjected to highly corrosive conditions, was investigated in boiling 43% MgCl2 solution. In order to evaluate the stress corrosion cracking susceptibility of the top layer, constant load tests and metallographic examinations in tested SCC specimens were conducted. The susceptibility to stress corrosion cracking was evaluated in terms of the time-to-fracture. Results showed that the E309-16 clad metal presented the best SCC resistance. This may be attributed to the presence of a discontinuous delta-ferrite network in the austenitic matrix, which acted as a barrier to cracks propagation. Concerning to E308-16 and E316L-16 clad metals, results showed that these presented a similar SCC test performance. Their higher SCC susceptibility may be attributed to the presence of continuous vermicular delta-ferrite in their microstructure.展开更多
Electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques were used to detect stress corrosion cracking(SCC) on 40Cr steel specimens exposed to the acidified chloride solution at ambient. To...Electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques were used to detect stress corrosion cracking(SCC) on 40Cr steel specimens exposed to the acidified chloride solution at ambient. To test these two techniques,slow strain rate tensile(SSRT) tests were performed with 40Cr specimen in the identical corrosive solution at room temperature. In impedance measurements,phase shifts in frequency range from 1 to 1 000 Hz show a clear difference between the stressed and non-stressed specimens,suggesting that stress corrosion cracks are detected by the impedance measurements. EN signals in the process of SCC were recorded and then analyzed by standard deviation(STD). On the other hand,the mechanical properties,such as maximum tensile strength(MTS) and fracture strain(FS) measured by the SSRT,decrease significantly when the specimens are exposed to the corrosive solution relative to that in an inert medium. The SSRT results are consistent with fractography of the tested specimens by scanning electron microscopy(SEM). Analysis of the fracture surface clearly shows intergranular attack,suggesting that stress corrosion cracks are formed.展开更多
The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribut...The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.展开更多
Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42%were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law.A sim...Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42%were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law.A simple predicting method for crack growth rates has been proposed involving strengthσband the relation between cyclic stress and strain.The validity of proposed method has been confirmed by experiments on several carbon steels with different loadings.展开更多
文摘Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.
基金supported by the National Science & Technology Infrastructure Development Program of China(No.2005DKA10400)
文摘Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB605005)Shanghai Municipal Committee of Science and Technology of china(Grant No. 005207019,Grant No. 08520708000)
文摘Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.
基金supported by the National Science and Technology Infrastructure Platforms Construction Projects of China (No.2005DKA 10400)the Major Fund in the Tenth Five-Year Development Plan of China (No.50499333-08)
文摘In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.
基金financially supported by the National Science and Technology Major Project,China(No.2017-Ⅶ0012-0109)。
文摘This study aims at providing systematically insights to clarify the impact of cathodic polarization on the stress corrosion cracking(SCC)behavior of 21 Cr2 NiMo steel.Slow-strain-rate tensile tests demonstrated that 21 Cr2 NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization.The lowest SCC susceptibility occurred at-775 mV vs.SCE,whereas the SCC susceptibility was remarkably higher at potentials below-950 mV vs.SCE.Scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)revealed that the cathodic potential decline caused a transition from transgranular to intergranular mode in the fracture path.The intergranular mode transformed from bainite boundaries separation to prior austenitic grain boundaries separation under stronger cathodic polarization.Furthermore,corrosion pits promoted the nucleation of SCC cracks.In conclusion,with the decrease in the applied potential,the SCC mechanism transformed from the combination of hydrogen embrittlement and anodic dissolution to typical hydrogen embrittlement.
基金Project(2012AA040105)supported by the High-tech Research and Development Program of ChinaProject(2014CB643300)supported by National Basic Research Program of ChinaProject(51741034)supported by National Natural Science Foundation of China
文摘Stress corrosion cracking (SCC) behavior of P 110 tubing steel in simulated C02 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements. The results demonstrate that SCC of P110 tubing steel could occur in acidulous simulated environment, and the sensitivity of SCC increases with the decrease ofpH, as well as increase of sulfide concentration and total environmental pressure. Both anodic dissolution and hydrogen embrittlement make contributions to the SCC. Adequate concentration of corrosion inhibitor can inhibit the occurrence of SCC on account of the inhibition of localized anodic dissolution and cathodic hydrogen evolution.
基金Project(51171011)supported by the National Science Foundation of China
文摘The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DCB)specimens.The SCC morphology was observed by using scanning electron microscopy(SEM)and the composition of corrosion products was analyzed by using energy dispersive spectrometer(EDS).The results show that the crack propagates to bifurcation in NaCl and Na2SO4 solution,while the crack in Na2CO3 solution propagates along the load direction.The SCC rate in NaCl solution is the highest,while lower in Na2SO4 solution and little in Na2CO3 solution.From the SEM morphologies,quasi-cleavage fracture was observed in NaCl and Na2SO4 solutions,but intergranular features in Na2CO3 solution.The mechanism of anion effect on SCC of steel 23Co14Ni12Cr3Mo was studied by using full immersion test and electrochemical measurements.
文摘The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the quenching temperature raised from 870 to 1200℃ . All of the fractures are intergranular.The analyses of the segregation along prior austenitic grain boundaries,grain size and other microstructural factors reveal that the inerease of K_(ISCC) is mainly due to the coarsening of prior austenitic grains.
基金Supported by the National Natural Science Foundation of China and State Key Laboratory for Corrosion and Protection and Study Foundation of The Hong Kong Polytechnic University.
文摘Specimens of AISI 321 stainless steel (0Cr18Ni9Ti) of various martensile contents were prepared by the low temperature(-70℃) elongation method- X-ray diffraction (XRD) and transmission electron micrograph (TEM) techniques were used to study the phase transition process and its structure. The relationship between deformation-induced martensite and stress corrosion cracking (SCC) susceptibility of the steel in 42% (boiling) MgCl2 solution was investigated using the constant load SCC test with the normalized threshold values. The results reveal that when the α'-martensite content is less than 5% and also in the range of 15%-24 % , the SCC susceptibility of this material decreases with the increase of α'-martensite content.However. whenthe α' martensite content is in the rang of 5% -15% and more than 24%, the SCC susceptibility of this material increases with the increase of the α'-martensite content. The SCC fracture surface of the specimens exhibits a stepped fracture surface and transgranular stress corrosion fracture surface morphology.
文摘SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a short time as a few hours or take years and decades to happen. Most alloys are liable to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are common to perform poorly. SCC of austenitic stainless steels of types 316 was investigated as a function of applied stress at room temperature in sodium chloride solutions using a constant load method. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of notched specimen. The stress depends on fracture appearance and parameters of time to cracking, and cracking growth. The results explained in terms of comparison between the two concentrations of sodium chloride solutions.
文摘The SCC susceptibility of type 321 stainless steel in acidic chloride solution has been studied by slow strain rate testing (SSRT) and SEM. During the slow rate tensile process, the specimen was polarized with different potential perturbation modes such as cyclic potential scan and cyclic potential step methods. The results indicated that the potential scan rate or step frequency played an essential role in the initiation and propagation of crack.
文摘This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion cracking sus-ceptibility measurements were carried out in 52 Wt% ammonium nitrate solutions at 368° K and various pH values ranging from 0.77 to 9.64. Constant load stress corrosion test at 90% yield stress was conducted. Tested specimens were prepared and examined using the scanning electron microscope (SEM). The potentiodynamic polarization curves for different pH values again emphasized the validity of the gravimetric measurements and hence the mechanism of cracking was attributed to the stress that assisted the dissolution process.
文摘The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic seawaer was studied by slow strain rate (SSR) technique and fracture method. The fractured surface was characterzed by cleavage fracture. The inhibiting effects of KI on SCC behavior were also covered in this detailed study which showed that they were meinly attributable to their inhibition on anodic reaction. The SCC mechanism study supported the unified mechanism of SCC and corrosion fatigue cracking (CFC).
基金Item Sponsored by Special Funds for State Major Basis Research(G19990650)
文摘The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.
文摘The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration.
基金supported by the National Natural Science Foundation of China (Nos. 51871204 and U1706221)。
文摘980 high-strength steel has been widely used in marine engineering structures due to its high strength and toughness.However,it is easily affected by the harsh environmental conditions(such as the presence of sulfate-reducing bacteria,SRB),leading to the risk of stress corrosion cracking(SCC).In this paper,the effects of SRB and its metabolites on hydrogen permeation and SCC mechanism of 980 steel in seawater solution were investigated by slow strain rate tensile test,scanning electron microscope,Xray energy spectroscopy,Raman spectroscopy and Devanathan-Stachurski double electrolytic cell.Results demonstrated that the SCC susceptibility of 980 steel was promoted in the presence of SRB,which was related to the cultivation time of the bacteria.When SRB were cultivated for 3 d and 6 d,the SCC mechanism was controlled by hydrogen-induced cracking(HIC);while the cultivation time extended to 11 d,the SCC of 980 steel was under the combined effect of the anodic dissolution(AD) and HIC mechanism.When cultivated for 16 d,the SCC of 980 steel was caused by the dominant AD.Both the SRB accelerated hydrogen permeation under cathodic depolarization process and SRB assisted AD(pitting corrosion)played an enhancing role in promoting SCC susceptibility of 980 steel.
文摘The effect of clad metal composition on stress corrosion cracking (SCC) behavior of three types of SMAW filler metals (E308L-16, E309-16 and E316L-16), used for cladding components subjected to highly corrosive conditions, was investigated in boiling 43% MgCl2 solution. In order to evaluate the stress corrosion cracking susceptibility of the top layer, constant load tests and metallographic examinations in tested SCC specimens were conducted. The susceptibility to stress corrosion cracking was evaluated in terms of the time-to-fracture. Results showed that the E309-16 clad metal presented the best SCC resistance. This may be attributed to the presence of a discontinuous delta-ferrite network in the austenitic matrix, which acted as a barrier to cracks propagation. Concerning to E308-16 and E316L-16 clad metals, results showed that these presented a similar SCC test performance. Their higher SCC susceptibility may be attributed to the presence of continuous vermicular delta-ferrite in their microstructure.
文摘Electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques were used to detect stress corrosion cracking(SCC) on 40Cr steel specimens exposed to the acidified chloride solution at ambient. To test these two techniques,slow strain rate tensile(SSRT) tests were performed with 40Cr specimen in the identical corrosive solution at room temperature. In impedance measurements,phase shifts in frequency range from 1 to 1 000 Hz show a clear difference between the stressed and non-stressed specimens,suggesting that stress corrosion cracks are detected by the impedance measurements. EN signals in the process of SCC were recorded and then analyzed by standard deviation(STD). On the other hand,the mechanical properties,such as maximum tensile strength(MTS) and fracture strain(FS) measured by the SSRT,decrease significantly when the specimens are exposed to the corrosive solution relative to that in an inert medium. The SSRT results are consistent with fractography of the tested specimens by scanning electron microscopy(SEM). Analysis of the fracture surface clearly shows intergranular attack,suggesting that stress corrosion cracks are formed.
基金supported by the National Natural Science Foundation of China(Nos.51271171 and 11775150)
文摘The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.
基金the supports from the Research Foundation for Visiting Scholars of Key Laboratory of Solid Mechanics and FML of Education Ministry,P R Chinathe supports from Japan Society for Promotion of Science
文摘Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42%were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law.A simple predicting method for crack growth rates has been proposed involving strengthσband the relation between cyclic stress and strain.The validity of proposed method has been confirmed by experiments on several carbon steels with different loadings.