At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. I...At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. In the present work, the absorption and regeneration performance of a hybrid solvent MEA-methanol was studied and compared to the aqueous solutions of monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA) in a bubbling reactor. Also the performance of MEA-methanol solutions(including the absorption performance, regeneration performance,cyclic absorption performance, density and viscosity) was studied with different MEA concentrations. A pilot-plant CO_2 capture test bed was used to study the potential of MEA-methanol to replace aqueous MEA in industrial use. The results showed that the initial absorption rate of MEA-methanol solvent is the fastest compared with other solvents. The 30% MEA-methanol had a faster mass transfer coefficient, a higher CO_2 absorption efficiency and a lower regeneration energy consumption than aqueous MEA. And through the study of the reaction heat of CO_2 into MEA-methanol and aqueous MEA,it can be concluded that the desorption heat of rich MEA-methanol is only about 30% of rich aqueous MEA solvent in the regeneration process which showed that 30% MEA-methanol solvent is a promising candidate for CO_2 capture.展开更多
为了克服目前管状结构直接甲醇燃料电池(DMFC)成型困难的问题,提出了一种新型结构的膜电极组件(MEA)——V形截面MEA(V-MEA)。确定了V-MEA的结构参数,V-MEA具体由阳极钛网、阳极催化剂层、Nafion膜、阴极催化剂层、阴极扩散层和阴极钛网...为了克服目前管状结构直接甲醇燃料电池(DMFC)成型困难的问题,提出了一种新型结构的膜电极组件(MEA)——V形截面MEA(V-MEA)。确定了V-MEA的结构参数,V-MEA具体由阳极钛网、阳极催化剂层、Nafion膜、阴极催化剂层、阴极扩散层和阴极钛网六层组成。完成了V形截面DMFC(V-DMFC)结构的设计,V-DMFC由底座、V-MEA、密封元件、燃料舱箱体、盖板和塞子等组成。使用自己设计和加工的模具制备了V-MEA,与自己设计和加工的壳体一起组装了V-DMFC样机,并研究了其性能,以1 mol/L甲醇+0.5 mol/L硫酸作为阳极电解液,在高温通入0.1 MPa的100 m L/min氧气条件下,V-DMFC样机最高比功率达到9.50 m W/cm2。展开更多
基金supported by the Sinopec Ningbo Engineering Co., Ltd.(No.l4850000-14-ZC0609-0003, H8XY-0032)
文摘At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. In the present work, the absorption and regeneration performance of a hybrid solvent MEA-methanol was studied and compared to the aqueous solutions of monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA) in a bubbling reactor. Also the performance of MEA-methanol solutions(including the absorption performance, regeneration performance,cyclic absorption performance, density and viscosity) was studied with different MEA concentrations. A pilot-plant CO_2 capture test bed was used to study the potential of MEA-methanol to replace aqueous MEA in industrial use. The results showed that the initial absorption rate of MEA-methanol solvent is the fastest compared with other solvents. The 30% MEA-methanol had a faster mass transfer coefficient, a higher CO_2 absorption efficiency and a lower regeneration energy consumption than aqueous MEA. And through the study of the reaction heat of CO_2 into MEA-methanol and aqueous MEA,it can be concluded that the desorption heat of rich MEA-methanol is only about 30% of rich aqueous MEA solvent in the regeneration process which showed that 30% MEA-methanol solvent is a promising candidate for CO_2 capture.
文摘为了克服目前管状结构直接甲醇燃料电池(DMFC)成型困难的问题,提出了一种新型结构的膜电极组件(MEA)——V形截面MEA(V-MEA)。确定了V-MEA的结构参数,V-MEA具体由阳极钛网、阳极催化剂层、Nafion膜、阴极催化剂层、阴极扩散层和阴极钛网六层组成。完成了V形截面DMFC(V-DMFC)结构的设计,V-DMFC由底座、V-MEA、密封元件、燃料舱箱体、盖板和塞子等组成。使用自己设计和加工的模具制备了V-MEA,与自己设计和加工的壳体一起组装了V-DMFC样机,并研究了其性能,以1 mol/L甲醇+0.5 mol/L硫酸作为阳极电解液,在高温通入0.1 MPa的100 m L/min氧气条件下,V-DMFC样机最高比功率达到9.50 m W/cm2。