Atoms in most organic molecules are often carbon,oxygen,nitrogen,sulfur,halogens,etc. Based on the three-dimensional structure of a molecule,a molecular structural characterization(MSC) method called improved molecu...Atoms in most organic molecules are often carbon,oxygen,nitrogen,sulfur,halogens,etc. Based on the three-dimensional structure of a molecule,a molecular structural characterization(MSC) method called improved molecular electronegativity-distance vector(I-MEDV) was developed. It was used to describe the structures of 37 compounds of styrax japonicus sieb flowers. Through multiple linear regression(MLR),a QSRR model was built up. The correlation coefficient(R1) of the model was 0.980. Then,4 vectors were selected to build another model through the method of stepwise multiple regression(SMR) ,and the correlation coefficient(R2) of the model was 0.975. Moreover,all the two models were evaluated by performing the crossvalidation with the leave-one-out(LOO) procedure and the correlation coefficients(Rcv) were 0.948 and 0.968,respectively. The results show that the I-MEDV could successfully describe the structures of organic compounds. The stability and predictability of the models were good.展开更多
The molecular electronegativity-distance vector (MEDV) was used to describe the molecular structure of volatile components of Rosa banksiae Ait, and QSRR model was built up by use of multiple linear regression (MLR...The molecular electronegativity-distance vector (MEDV) was used to describe the molecular structure of volatile components of Rosa banksiae Ait, and QSRR model was built up by use of multiple linear regression (MLR). Furthermore, in virtue of variable screening by the stepwise multiple regression technique, the QSRR models of 10 and 6 variables and linear retention index (LRI) 10, 7 and 6 varieables were built up by combinating MEDV with the Ultra2 column GC retention time (tR) of 53 volatile components of Rosa Banksiae Air. The multiple correlation coefficients (R) of modeling calculation values of QSRR model were 0.906, 0.906, 0.949, 0.943 and 0.949, respectively. The cross-verification multiple correlation coefficients (RCV) were 0.903, 0.904, 0.867, 0.901 and 0.904, respectively. The results show that the models constructed could provide estimation stability and favorable predictive ability.展开更多
基金supported by the Youth Foundation of Education Bureau,Sichuan Province (09ZB036)Technology Bureau,Sichuan Province (2006j13-141)
文摘Atoms in most organic molecules are often carbon,oxygen,nitrogen,sulfur,halogens,etc. Based on the three-dimensional structure of a molecule,a molecular structural characterization(MSC) method called improved molecular electronegativity-distance vector(I-MEDV) was developed. It was used to describe the structures of 37 compounds of styrax japonicus sieb flowers. Through multiple linear regression(MLR),a QSRR model was built up. The correlation coefficient(R1) of the model was 0.980. Then,4 vectors were selected to build another model through the method of stepwise multiple regression(SMR) ,and the correlation coefficient(R2) of the model was 0.975. Moreover,all the two models were evaluated by performing the crossvalidation with the leave-one-out(LOO) procedure and the correlation coefficients(Rcv) were 0.948 and 0.968,respectively. The results show that the I-MEDV could successfully describe the structures of organic compounds. The stability and predictability of the models were good.
文摘The molecular electronegativity-distance vector (MEDV) was used to describe the molecular structure of volatile components of Rosa banksiae Ait, and QSRR model was built up by use of multiple linear regression (MLR). Furthermore, in virtue of variable screening by the stepwise multiple regression technique, the QSRR models of 10 and 6 variables and linear retention index (LRI) 10, 7 and 6 varieables were built up by combinating MEDV with the Ultra2 column GC retention time (tR) of 53 volatile components of Rosa Banksiae Air. The multiple correlation coefficients (R) of modeling calculation values of QSRR model were 0.906, 0.906, 0.949, 0.943 and 0.949, respectively. The cross-verification multiple correlation coefficients (RCV) were 0.903, 0.904, 0.867, 0.901 and 0.904, respectively. The results show that the models constructed could provide estimation stability and favorable predictive ability.