A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and t...A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and test specimen.The test structure is capable of producing large displacement and stresswhile keeping a relatively low temperature gradient across the test specimen.A voltage is applied across the beams of the chevron-shaped actuator,producing thermal expansion force to fracture the test specimen.Actuator deflection is computed based on elastic analysis of structures.To verify the test structure,simulations have been implemented using COMSOL Multiphysics.A 620μmlong,410μm wide,10μm thick test structure produced stress of 7.1 GPawhile the applied voltage is 5 V.The results indicate that the test structure is suitable for in-situ measurement of the fracture strength of MEMS thin films.展开更多
基金supported by the National High Technology Program of P. R. China under Grant No. 2015AA042604
文摘A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and test specimen.The test structure is capable of producing large displacement and stresswhile keeping a relatively low temperature gradient across the test specimen.A voltage is applied across the beams of the chevron-shaped actuator,producing thermal expansion force to fracture the test specimen.Actuator deflection is computed based on elastic analysis of structures.To verify the test structure,simulations have been implemented using COMSOL Multiphysics.A 620μmlong,410μm wide,10μm thick test structure produced stress of 7.1 GPawhile the applied voltage is 5 V.The results indicate that the test structure is suitable for in-situ measurement of the fracture strength of MEMS thin films.