The last half-century was transformed by the electronic revolution that essentially reproduced the human brain and its computing capacity on a chip. But over time, scientists have realized that something was missing t...The last half-century was transformed by the electronic revolution that essentially reproduced the human brain and its computing capacity on a chip. But over time, scientists have realized that something was missing to give life, so to speak, to the small chip with a brain: One needed to awaken its senses and develop its muscles! This challenge was solved through MEMS (micro electro mechanical systems). Indeed, MEMS today are equipped with the sense of sight, smell, hearing, taste and touch through microsensors. They are also capable of physical exertion through small muscles called microactuators. These new capabilities open wide fields of imagination and important specific applications.展开更多
The pull-in instability of a cantilever nano-actuator model incorporating the effects of the surface, the fringing field, and the Casimir attraction force is investigated. A new quartic polynomial is proposed as the s...The pull-in instability of a cantilever nano-actuator model incorporating the effects of the surface, the fringing field, and the Casimir attraction force is investigated. A new quartic polynomial is proposed as the shape function of the beam during the deflection, satisfying all of the four boundary values. The Gaussian quadrature rule is used to treat the involved integrations, and the design parameters are preserved in the evaluated formulas. The analytic expressions are derived for the tip deflection and pull-in parameters of the cantilever beam. The micro-electromechanical system (MEMS) cantilever actuators and freestanding nano-actuators are considered as two special cases. It is proved that the proposed method is convenient for the analyses of the effects of the surface, the Casimir force, and the fringing field on the pull-in parameters.展开更多
The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption de...The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption density, and the surface parameter on the resonant frequency of the micro/nanobeams are investigated. It is found that, in ad- dition to the nonlocal parameter and the surface parameter, the bending rigidity and the adsorption-induced mass exhibit different behaviors with the increase in the adsorption density depending on the adatom category and the substrate material.展开更多
A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation p...A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation principle of the motor, structure design, technique, driven circuit, and quality examination with Raman spectrum. The μ-micro motor is fabricated by the micro electro-mechanical systems (MEMS) process, the structure design must be considered to fabricate or assembly the parts during machining the motor in the meantime. The research proved that integration of IC (integrated circuit) process and MEMS using masks is effective in obtaining the rapid prototyping manufacturing of the μ-micro motor. With the mature technique to fabricate the motor, there are advantages to produce the motor in short time and with lower cost than before. The motor is a common power source of micro machines in military and civilian applications, for example, applied to micro robot, micro bio medicine, and micro machine. The size of the motor is 190 μm in maximum diameter by 125 μm in height that is bulk machined in array with the number of hundreds of micro motors on a substrate.展开更多
以微/纳型信息器件所需的能量供应技术为对象,对全球微/纳型发电技术相关专利产出进行定量分析,揭示当前专利活动特点,确定相关技术领域的重要研发方向与重点技术,并在综合分析基础上就今后发展提出了参考建议。主要分析工具包括汤森科...以微/纳型信息器件所需的能量供应技术为对象,对全球微/纳型发电技术相关专利产出进行定量分析,揭示当前专利活动特点,确定相关技术领域的重要研发方向与重点技术,并在综合分析基础上就今后发展提出了参考建议。主要分析工具包括汤森科技信息集团的数据分析工具TDA(Thomson Data Analyzer)、TI(Thomson Innovation)分析平台、中国科学院国家科学图书馆专利在线分析系统2.0。展开更多
文摘The last half-century was transformed by the electronic revolution that essentially reproduced the human brain and its computing capacity on a chip. But over time, scientists have realized that something was missing to give life, so to speak, to the small chip with a brain: One needed to awaken its senses and develop its muscles! This challenge was solved through MEMS (micro electro mechanical systems). Indeed, MEMS today are equipped with the sense of sight, smell, hearing, taste and touch through microsensors. They are also capable of physical exertion through small muscles called microactuators. These new capabilities open wide fields of imagination and important specific applications.
基金supported by the National Natural Science Foundation of China(No.11201308)the Natural Science Foundation of Shanghai(No.14ZR1440800)the Innovation Program of the Shanghai Municipal Education Commission(No.14ZZ161)
文摘The pull-in instability of a cantilever nano-actuator model incorporating the effects of the surface, the fringing field, and the Casimir attraction force is investigated. A new quartic polynomial is proposed as the shape function of the beam during the deflection, satisfying all of the four boundary values. The Gaussian quadrature rule is used to treat the involved integrations, and the design parameters are preserved in the evaluated formulas. The analytic expressions are derived for the tip deflection and pull-in parameters of the cantilever beam. The micro-electromechanical system (MEMS) cantilever actuators and freestanding nano-actuators are considered as two special cases. It is proved that the proposed method is convenient for the analyses of the effects of the surface, the Casimir force, and the fringing field on the pull-in parameters.
基金Project supported by the National Basic Research Program of China(No.2011CB610300)the 111 Project of China(No.B07050)+3 种基金the National Natural Science Foundation of China(Nos.10972182, 11172239,and 10902089)the Doctoral Program Foundation of Education Ministry of China (No.20106102110019)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment of China(No.GZ0802)the Doctorate Foundation of Northwestern Polytechnical University of China(No.CX201111)
文摘The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption density, and the surface parameter on the resonant frequency of the micro/nanobeams are investigated. It is found that, in ad- dition to the nonlocal parameter and the surface parameter, the bending rigidity and the adsorption-induced mass exhibit different behaviors with the increase in the adsorption density depending on the adatom category and the substrate material.
基金Supported by Foundation of Department of Mechanical and Electrical Engineering of Xiamen University (No. Y03001)
文摘A new process and technology of rapid prototyping for a μ-micro motor is presented as a nontraditional machining and an advanced manufacturing technology (AMT) to be realized by using masks, including the operation principle of the motor, structure design, technique, driven circuit, and quality examination with Raman spectrum. The μ-micro motor is fabricated by the micro electro-mechanical systems (MEMS) process, the structure design must be considered to fabricate or assembly the parts during machining the motor in the meantime. The research proved that integration of IC (integrated circuit) process and MEMS using masks is effective in obtaining the rapid prototyping manufacturing of the μ-micro motor. With the mature technique to fabricate the motor, there are advantages to produce the motor in short time and with lower cost than before. The motor is a common power source of micro machines in military and civilian applications, for example, applied to micro robot, micro bio medicine, and micro machine. The size of the motor is 190 μm in maximum diameter by 125 μm in height that is bulk machined in array with the number of hundreds of micro motors on a substrate.
文摘以微/纳型信息器件所需的能量供应技术为对象,对全球微/纳型发电技术相关专利产出进行定量分析,揭示当前专利活动特点,确定相关技术领域的重要研发方向与重点技术,并在综合分析基础上就今后发展提出了参考建议。主要分析工具包括汤森科技信息集团的数据分析工具TDA(Thomson Data Analyzer)、TI(Thomson Innovation)分析平台、中国科学院国家科学图书馆专利在线分析系统2.0。