The sulfur pollutants are the source of a sizeable portion of the air pollution. In this work, the recent spatiotemporal distribution and trend of the mass concentration of two of the critical sulfur pollutants, SO2 a...The sulfur pollutants are the source of a sizeable portion of the air pollution. In this work, the recent spatiotemporal distribution and trend of the mass concentration of two of the critical sulfur pollutants, SO2 and SO4, in addition to the aerosol optical properties (AOD) were analyzed over the region of the Middle East and North Africa (MENA) from satellite and Modern Era-Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data. The SO2 and SO4 data used in these analyses are obtained from (MERRA-2) with a resolution of 0.5° × 0.625° throughout a period of 10 years (2005-2015). On the other hand, the temporal trend and spatial distribution of AOD were identified from four different satellite data. 1) moderate-resolution imaging spectroradiometer (MODIS) Level 3 AOD data at 550 nm wavelengths from Collection 6 algorithm (combined dark target and deep blue algorithms) are used for 10 years temporal analysis (2006-2015). 2) Multi-angle imaging spectroradiometer (MISR) with 0.5 deg spatial resolution for the same 10 years (2006-2015). 3) Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) with 0.5 deg for the period (2005-2010). 4) Ozone Monitoring Instrument (OMI) AOD at 500 nm wavelength with resolution 1 degree. This study presents more resent 10 years of Spatiotemporal of SO2, SO4 and AOD over MENA domain.展开更多
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range...Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China.展开更多
Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manife...Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.展开更多
This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
基于碳卫星的遥感是一种正在发展的大范围高精度CO_(2)监测方法,但当监测对象为我国长三角区域这种大空间尺度时,碳卫星数据会存在时空稀疏性的问题。本文提出了一种新的模型ST-SAN(space time soft attention network),旨在提高碳卫星...基于碳卫星的遥感是一种正在发展的大范围高精度CO_(2)监测方法,但当监测对象为我国长三角区域这种大空间尺度时,碳卫星数据会存在时空稀疏性的问题。本文提出了一种新的模型ST-SAN(space time soft attention network),旨在提高碳卫星数据的高时空分辨率XCO_(2)(大气CO_(2))浓度估算精度。本文将2016—2020年的多源数据(包括人类活动数据、气象数据和植被数据)与碳卫星数据结合,生成空间分辨率为0.05°的无间隙XCO_(2)日浓度数据集。通过ST-SAN模型对这些数据进行训练和预测。实验结果表明,重建后的XCO_(2)数据集与OCO-2卫星数据和地面站点数据具有高度一致性,验证了本方法在高时空分辨率XCO_(2)浓度估算中的有效性。展开更多
Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(...Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_(2))since 2014.In this study,the OCO-2 XCO_(2)products were compared between in-situ data from the Total Carbon Column Network(TCCON)and Global Monitoring Division(GMD),and modeling data from CarbonTracker2019 over global ocean and land.Results showed that the OCO-2 XCO_(2)data are consistent with the TCCON and GMD in situ XCO_(2)data,with mean absolute biases of 0.25×10^(-6)and 0.67×10^(-6),respectively.Moreover,the OCO-2 XCO_(2)data are also consistent with the CarbonTracker2019 modeling XCO_(2)data,with mean absolute biases of 0.78×10^(-6)over ocean and 1.02×10^(-6)over land.The results indicated the high accuracy of the OCO-2 XCO_(2)product over global ocean which could be applied to estimate the air-sea CO_(2)flux.展开更多
This paper reviews the CO2emissions data for China provided by various international organizations and databases(namely IEA,BP,EDGAR/PBL/JRC,CDIAC,EIA and CAIT)and compares them with China’s official data and estimat...This paper reviews the CO2emissions data for China provided by various international organizations and databases(namely IEA,BP,EDGAR/PBL/JRC,CDIAC,EIA and CAIT)and compares them with China’s official data and estimation.The difference among these data is due to different scopes,methods and underlying data,and particularly the difference in fossil fuel consumption.Compared with data from other databases,IEA and CAIT data have the best comparability with China’s official data.The paper recommends that China enhance its coal statistics,raise the frequency of official data publication and improve the inventory completeness.展开更多
In the past decade,online Peer-to-Peer(P2P)lending platforms have transformed the lending industry,which has been historically dominated by commercial banks.Information technology breakthroughs such as big data-based ...In the past decade,online Peer-to-Peer(P2P)lending platforms have transformed the lending industry,which has been historically dominated by commercial banks.Information technology breakthroughs such as big data-based financial technologies(Fintech)have been identified as important disruptive driving forces for this paradigm shift.In this paper,we take an information economics perspective to investigate how big data affects the transformation of the lending industry.By identifying how signaling and search costs are reduced by big data analytics for credit risk management of P2P lending,we discuss how information asymmetry is reduced in the big data era.Rooted in the lending business,we propose a theory on the economics of big data and outline a number of research opportunities and challenging issues.展开更多
文摘The sulfur pollutants are the source of a sizeable portion of the air pollution. In this work, the recent spatiotemporal distribution and trend of the mass concentration of two of the critical sulfur pollutants, SO2 and SO4, in addition to the aerosol optical properties (AOD) were analyzed over the region of the Middle East and North Africa (MENA) from satellite and Modern Era-Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data. The SO2 and SO4 data used in these analyses are obtained from (MERRA-2) with a resolution of 0.5° × 0.625° throughout a period of 10 years (2005-2015). On the other hand, the temporal trend and spatial distribution of AOD were identified from four different satellite data. 1) moderate-resolution imaging spectroradiometer (MODIS) Level 3 AOD data at 550 nm wavelengths from Collection 6 algorithm (combined dark target and deep blue algorithms) are used for 10 years temporal analysis (2006-2015). 2) Multi-angle imaging spectroradiometer (MISR) with 0.5 deg spatial resolution for the same 10 years (2006-2015). 3) Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) with 0.5 deg for the period (2005-2010). 4) Ozone Monitoring Instrument (OMI) AOD at 500 nm wavelength with resolution 1 degree. This study presents more resent 10 years of Spatiotemporal of SO2, SO4 and AOD over MENA domain.
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金the National Natural Science Foundation of China(Grant No.42204006)the Guangxi Natural Science Foundation of China(2020GXNSFBA297145)+1 种基金the“Ba Gui Scholars”program of the provincial government of Guangxi,and Innovation Project of GuangXi Graduate Education(Grant No.YCSW2022322)Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(GrantNo.20-01-03,21-01-04)
文摘Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China.
基金supported by a grant from Hubei Key Laboratory of Diabetes and Angiopathy Program of Hubei University of Science and Technology(2020XZ10)Project of Education Commission of Hubei Province(B2022192).
文摘Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
文摘基于碳卫星的遥感是一种正在发展的大范围高精度CO_(2)监测方法,但当监测对象为我国长三角区域这种大空间尺度时,碳卫星数据会存在时空稀疏性的问题。本文提出了一种新的模型ST-SAN(space time soft attention network),旨在提高碳卫星数据的高时空分辨率XCO_(2)(大气CO_(2))浓度估算精度。本文将2016—2020年的多源数据(包括人类活动数据、气象数据和植被数据)与碳卫星数据结合,生成空间分辨率为0.05°的无间隙XCO_(2)日浓度数据集。通过ST-SAN模型对这些数据进行训练和预测。实验结果表明,重建后的XCO_(2)数据集与OCO-2卫星数据和地面站点数据具有高度一致性,验证了本方法在高时空分辨率XCO_(2)浓度估算中的有效性。
基金The National Key Research and Development Programme of China under contract No.2017YFA0603004the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(Zhanjiang Bay Laboratory)under contract No.ZJW-2019-08+1 种基金the National Natural Science Foundation of China under contract Nos 41825014,41676172 and 41676170the Global Change and Air-Sea Interaction Project of China under contract Nos GASI-02-SCS-YGST2-01,GASI-02-PACYGST2-01 and GASI-02-IND-YGST2-01。
文摘Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_(2))since 2014.In this study,the OCO-2 XCO_(2)products were compared between in-situ data from the Total Carbon Column Network(TCCON)and Global Monitoring Division(GMD),and modeling data from CarbonTracker2019 over global ocean and land.Results showed that the OCO-2 XCO_(2)data are consistent with the TCCON and GMD in situ XCO_(2)data,with mean absolute biases of 0.25×10^(-6)and 0.67×10^(-6),respectively.Moreover,the OCO-2 XCO_(2)data are also consistent with the CarbonTracker2019 modeling XCO_(2)data,with mean absolute biases of 0.78×10^(-6)over ocean and 1.02×10^(-6)over land.The results indicated the high accuracy of the OCO-2 XCO_(2)product over global ocean which could be applied to estimate the air-sea CO_(2)flux.
基金supported by the project of research on key technologies for synthesis problems during climate change negotiations under 12FYP organized by Ministry of Science and Technology(No.2012BAC20B02)
文摘This paper reviews the CO2emissions data for China provided by various international organizations and databases(namely IEA,BP,EDGAR/PBL/JRC,CDIAC,EIA and CAIT)and compares them with China’s official data and estimation.The difference among these data is due to different scopes,methods and underlying data,and particularly the difference in fossil fuel consumption.Compared with data from other databases,IEA and CAIT data have the best comparability with China’s official data.The paper recommends that China enhance its coal statistics,raise the frequency of official data publication and improve the inventory completeness.
文摘In the past decade,online Peer-to-Peer(P2P)lending platforms have transformed the lending industry,which has been historically dominated by commercial banks.Information technology breakthroughs such as big data-based financial technologies(Fintech)have been identified as important disruptive driving forces for this paradigm shift.In this paper,we take an information economics perspective to investigate how big data affects the transformation of the lending industry.By identifying how signaling and search costs are reduced by big data analytics for credit risk management of P2P lending,we discuss how information asymmetry is reduced in the big data era.Rooted in the lending business,we propose a theory on the economics of big data and outline a number of research opportunities and challenging issues.