期刊文献+
共找到1,089篇文章
< 1 2 55 >
每页显示 20 50 100
An Effective Meshless Approach for Inverse Cauchy Problems in 2D and 3D Electroelastic Piezoelectric Structures
1
作者 Ziqiang Bai Wenzhen Qu Guanghua Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2955-2972,共18页
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within... In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data. 展开更多
关键词 Generalized finite difference method meshless method inverse Cauchy problems piezoelectric problems electroelastic analysis
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
2
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
A Novel Localized Meshless Method for Solving Transient Heat Conduction Problems in Complicated Domains
3
作者 Chengxin Zhang Chao Wang +1 位作者 Shouhai Chen Fajie Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2407-2424,共18页
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by... This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology. 展开更多
关键词 Local knot method transient heat conduction dual reciprocity method meshless method
下载PDF
A new complex variable meshless method for transient heat conduction problems 被引量:5
4
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
下载PDF
NUMERICAL ANALYSIS OF MINDLIN SHELL BY MESHLESS LOCAL PETROV-GALERKIN METHOD 被引量:4
5
作者 Di Li Zhongqin Li Shuhui Li 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期160-169,共10页
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact... The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results. 展开更多
关键词 meshless methods meshless local Petrov-Galerkin method moving least square SHELL
下载PDF
h-ADAPTIVE ANALYSIS BASED ON MESHLESS LOCAL PETROV-G ALERKIN METHOD WITH B SPLINE WAVELET FOR PLATES AND SHELLS 被引量:1
6
作者 Di Li Zhongqin Lin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期337-346,共10页
Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as t... Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as the basis of the moving least square method to construct the meshless interpolation function. Multi-resolution analysis is used to decompose the field variables into high and low scales and the high scale component can commonly represent the gradient of the solution according to inherent characteristics of wavelets. The high scale component in the present method can directly detect high gradient regions of the field variables. The developed adaptive refinement scheme has been applied to simulate actual examples, and the effectiveness of the present adaptive refinement scheme has been verified. 展开更多
关键词 meshless methods meshless local Petrov-Galerkin method multi-resolution analysis adaptive analysis plate and shell
下载PDF
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
7
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local Petrov-Galerkin method potential problems
下载PDF
New complex variable meshless method for advection-diffusion problems 被引量:1
8
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期92-98,共7页
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi... In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency. 展开更多
关键词 meshless method improved complex variable moving least-square approximation improved complex variable meshless method advection-diffusion problem
下载PDF
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
9
作者 王启防 戴保东 栗振锋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期238-244,共7页
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ... On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless localPetrov-Galerkin method transient heat conduction problems
下载PDF
Meshless Local Discontinuous Petrov-Galerkin Method with Application to Blasting Problems
10
作者 强洪夫 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第5期376-383,共8页
A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based R... A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional nonoverlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes. 展开更多
关键词 meshless method discontinuous Galerkin method meshless local discontinuous Petrov-Galerkin (MLDPG) method finite-volume particle method convection-dominated flow
下载PDF
Meshless Method for Analysis of Permeable Breakwaters in the Proximity of A Vertical Wall 被引量:6
11
作者 Nadji CHIOUKH Karim OUAZZANE +2 位作者 Yal??n YüKSEL Benameur HAMOUDI Esin ?EVIK 《China Ocean Engineering》 SCIE EI CSCD 2019年第2期148-159,共12页
In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves... In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves and in the proximity of a vertical wall. Both single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with appropriate mixed type boundary conditions, and solved numerically using the ISBM. To model the permeability of the breakwaters fully absorbing boundary conditions are assumed. Numerical results are presented in terms of hydrodynamic quantities of the reflection coefficients. These are firstly validated against the results of a multi-domain boundary element method(BEM) developed independently for a previous study. The agreement between the results of the two methods is excellent. The coefficients of reflection are then computed and discussed for a variety of structural conditions including the breakwaters height, width, spacing, and absorbing permeability. Effects of the proximity of the vertical plane wall are also investigated. The breakwater's width is found to have only marginal effects compared with its height. Permeability tends to decrease the minimum reflections. These coefficients show periodic variations with the spacing relative to the wavelength. Trapezoidal breakwaters are found to be more cost-effective than the rectangular breakwaters. Dual breakwater systems are confirmed to perform much better than single structures. 展开更多
关键词 meshless improved SINGULAR boundary method REGULAR normal waves rectangular and trapezoidal BREAKWATERS permeability vertical wall reflection
下载PDF
ANALYSIS OF 2-D THIN STRUCTURES BY THE MESHLESS REGULAR HYBRID BOUNDARY NODE METHOD 被引量:8
12
作者 Zhang Jianming Yao Zhenhan 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第1期36-44,共9页
Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the c... Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the cnvergence problem. Recently, by proposing anew approach to tranting the nearly- singular integrals, Liu et al.developed a BEM to successfully solve thin structures with thethickness-to- length ratios in the micro-or nano-scales. On the otherhand, the meshless Regular Hybrid Boundary Node Method (RHBNM), whichis proposed by the current authors and based on a modified functionaland the Moving Least-Square (MLS) approximation, has very promisingapplications for engineering problems owing To its meshless natureand dimension-reduction advantage, and not involving any singular ornearly-singular Integrals. Test examples show that the RHBNM can alsobe applied readily to thin structures with high accu- Racy withoutany modification. 展开更多
关键词 shell-like structures meshless moving least squares approximation hybridboundary node method
下载PDF
A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation 被引量:4
13
作者 葛红霞 程荣军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期91-97,共7页
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi... Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail. 展开更多
关键词 meshless method moving Kriging interpolation time-fractional diffusion equation
下载PDF
MESHLESS METHOD BASED ON COLLOCATION WITH CONSISTENT COMPACTLY SUPPORTED RADIAL BASIS FUNCTIONS 被引量:3
14
作者 宋康祖 张雄 陆明万 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期551-557,共7页
Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could re... Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could result in significant error in solving partial differential equations with Neumann boundary conditions.To overcome this drawback,the Consistent Compactly Supported Radial Basis Functions(CCSRBFs)are developed,which satisfy the predetermined consistency con- ditions.Meshless method based on point collocation with CCSRBFs is developed for solving partial differential equations.Numerical studies show that the proposed method improves the accuracy of approximation significantly. 展开更多
关键词 radial basis function COLLOCATION meshless
下载PDF
AN ASSESSMENT OF THE MESHLESS WEIGHTED LEAST-SQUARE METHOD 被引量:3
15
作者 PanXiaofei SzeKimYim ZhangXiong 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第3期270-282,共13页
The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, t... The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, the coe?cient matrix obtained is symmetric and semi- positive de?nite. In this paper, the method is further examined critically. The e?ects of several parameters on the results of MWLS are investigated systematically by using a cantilever beam and an in?nite plate with a central circular hole. The numerical results are compared with those obtained by using the collocation-based meshless method (CBMM) and Galerkin-based meshless method (GBMM). The investigated parameters include the type of approximations, the type of weight functions, the number of neighbors of an evaluation point, as well as the manner in which the neighbors of an evaluation point are determined. This study shows that the displacement accuracy and convergence rate obtained by MWLS is comparable to that of the GBMM while the stress accuracy and convergence rate yielded by MWLS is even higher than that of GBMM. Furthermore, MWLS is much more e?cient than GBMM. This study also shows that the instability of CBMM is mainly due to the neglect of the equi- librium residuals at boundary nodes. In MWLS, the residuals of all the governing equations are minimized in a weighted least-square sense. 展开更多
关键词 meshless MESHFREE least-square weighted residual
下载PDF
Meshless analysis of three-dimensional steady-state heat conduction problems 被引量:3
16
作者 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期36-41,共6页
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attr... Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples. 展开更多
关键词 reproducing kernel particle method meshless method steady-state heat conduction problem
下载PDF
ELASTIC DYNAMIC ANALYSIS OF MODERATELY THICK PLATE USING MESHLESS LRPIM 被引量:3
17
作者 Ping Xia Shuyao Long Hongxue Cui 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期116-124,共9页
A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using ... A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate. 展开更多
关键词 meshless method moderately thick plate local radial point interpolation method dynamic analysis Newmark method
下载PDF
Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems 被引量:2
18
作者 唐耀宗 李小林 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期215-225,共11页
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin... We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis. 展开更多
关键词 meshless method moving least squares approximation element-free Galerkin method error esti-mate
下载PDF
Global interpolating meshless shape function based on generalized moving least-square for structural dynamic analysis 被引量:2
19
作者 Dan XIE Kailin JIAN Weibin WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第9期1153-1176,共24页
A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta ... A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption. 展开更多
关键词 structural dynamics meshless method element-free Galerkin (EFG)method generalized moving least-square (GMLS)
下载PDF
Voronoi Based Discrete Least Squares Meshless Method for Heat Conduction Simulation in Highly Irregular Geometries 被引量:1
20
作者 LABIBZADEH Mojtaba 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期98-111,共14页
A new technique is used in Discrete Least Square Meshfree(DLSM) method to remove the common existing deficiencies of meshfree methods in handling of the problems containing cracks or concave boundaries. An enhanced ... A new technique is used in Discrete Least Square Meshfree(DLSM) method to remove the common existing deficiencies of meshfree methods in handling of the problems containing cracks or concave boundaries. An enhanced Discrete Least Squares Meshless method named as VDLSM(Voronoi based Discrete Least Squares Meshless) is developed in order to solve the steady-state heat conduction problem in irregular solid domains including concave boundaries or cracks. Existing meshless methods cannot estimate precisely the required unknowns in the vicinity of the above mentioned boundaries. Conducted researches are limited to domains with regular convex boundaries. To this end, the advantages of the Voronoi tessellation algorithm are implemented. The support domains of the sampling points are determined using a Voronoi tessellation algorithm. For the weight functions, a cubic spline polynomial is used based on a normalized distance variable which can provide a high degree of smoothness near those mentioned above discontinuities. Finally, Moving Least Squares(MLS) shape functions are constructed using a varitional method. This straight-forward scheme can properly estimate the unknowns(in this particular study, the temperatures at the nodal points) near and on the crack faces, crack tip or concave boundaries without need to extra backward corrective procedures, i.e. the iterative calculations for modifying the shape functions of the nodes located near or on these types of the complex boundaries. The accuracy and efficiency of the presented method are investigated by analyzing four particular examples. Obtained results from VDLSM are compared with the available analytical results or with the results of the well-known Finite Elements Method(FEM) when an analytical solution is not available. By comparisons, it is revealed that the proposed technique gives high accuracy for the solution of the steady-state heat conduction problems within cracked domains or domains with concave boundaries and at the same time possesses a high convergence rate which its accuracy is not sensitive to the arrangement of the nodal points. The novelty of this paper is the use of Voronoi concept in determining the weight functions used in the formulation of the MLS type shape functions. 展开更多
关键词 Discrete Least Squares meshless crack Voronoi tessellation concave boundaries Steady-state heat conduction.
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部