Introduction: This study was carried out to assess the quality of sheep meat sold to consumers in Saaba municipality. Methods: A preliminary survey consisted of assessing hygiene and sampling meat in butchers’ stores...Introduction: This study was carried out to assess the quality of sheep meat sold to consumers in Saaba municipality. Methods: A preliminary survey consisted of assessing hygiene and sampling meat in butchers’ stores. To achieve this, 100 sales outlets were surveyed for their hygiene conditions. 25 mutton meat samples were sampled in the three villages in Saaba district and analyzed using conventional microbiological techniques. The analysis consisted of determining the microbiological characteristics. Results: According to the results of this study, 100% of the butchers surveyed were men of the region. Among these men, 13% had secondary education, 46% had primary education and 41% were illiterate. Of the 100 retail outlets visited, 96% of the sellers were unaware of the hygiene rules and the dangers of microorganisms. The microbiological analysis of the samples revealed that 100% of the meat was of unsatisfactory microbiological quality. The average contamination rate by total aerobic mesophilic flora, total coliforms, Staphylococcus aureus and yeasts and molds was 8.93 × 106, 3.12 × 105, 3.69 × 106, and 6.74 × 103 CFU/g respectively. No Salmonella strain was detected in any of the samples analyzed. Conclusion: Our results pointed out the unsatisfactory safety quality of the sheep meat sold in the sheep meat and good hygiene practices.展开更多
Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed ...Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.展开更多
Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the ...Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the presence of mesophilic mixed bacterial culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. A mesophilic acidophiles culture was isolated from the acidic solution of the underground copper mine of Bor, Serbia. The nutrient medium was 9K at pH 1.6. 87% of the particles were <10 µm in size, with a pulp density of 8% (w/v). Bioleaching efficiencies of 89% for zinc, 83% for copper, and 68% for iron can be achieved in the examined conditions. Kinetic analysis shows that the change in leaching corresponds to the Spencer-Topley kinetic model for diffusion-controlled topochemical reactions.展开更多
Microbial carbon fixation is a paramount process in the ocean especially below the photic zone both in water and sedimentary ecosystems. Autotrophic microbes that fix carbon dioxide are renowned. However, the question...Microbial carbon fixation is a paramount process in the ocean especially below the photic zone both in water and sedimentary ecosystems. Autotrophic microbes that fix carbon dioxide are renowned. However, the question whether heterotrophs can also fix carbon is intriguing. Ten heterotrophically grown, identified bacterial isolates from the Sino-Pacific marine sediments were tested for autotrophic uptake potential with and without addition of electron donors. Nine of the ten isolates showed carbon uptake capacity without addition of any substrate at very low rates in the order of 10^(-8) to 10^(-4) fmol/(cell·h). The addition of manganese and ammonium at 1 mmol/L final concentration enhanced the uptake potential. Addition of 1 mmol/L final concentrations of reduced iron(10^(-6) to10^(-5) fmol/(cell·h) and sulfide(10^(-5) fmol/(cell·h) decreased the uptake potential significantly at p〈0.1. Bacterial tolerance to formaldehyde suggested propensities of anaplerotic chemical reactions that form metabolic intermediates of C-1 metabolism pathways. The isolates displayed high metabolic flexibility. With the changes in electron donors, the isolates metabolically toggled between relatively anoxic reductive iron/sulfur cycles and the oxidative cycles of manganese/ammonium and vice-versa. This property makes these microbes successful survivors in the highly dynamic Sino-Pacific sediments.展开更多
Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic a...Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities, i.e., β-glucosidase, N-α-benzoyl-Largininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The BAA-hydrolysing protease activity during the first 2-3 weeks was low with low pH, but was enhanced later with the pH increase. β-Glucosidase activity showed the lowest values in weeks 1-2, and recovered with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion was confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.展开更多
A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35℃ for 514 d, with organic loading rate (OL...A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35℃ for 514 d, with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m^3·d). The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand, high COD removal of 91% was obtained at two days' of hydraulic retention time (HRT), and the highest OLR of 17.5 kg COD/(m^3·d). On the other hand, only 46% COD in raw POME was transformed into biogas in which the methane content was about 70% (V/V). A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane was 56%. Volatile fatty acid (VFA) accumulation was observed in the later operation stage, and this was settled by supplementing trace metal elements. On the whole, the system exhibited good stability in terms of acidity and alkalinity. Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed.展开更多
The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recover...The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recoveries in a bioleaching process was investigated.Three main bioleaching parameters,namely pH,solid concentration and inoculum percent,were changed during the bioleaching tests based on CCD.The ranges of the bioleaching process variables used in the design were as follows:pH1.46-2.14,solid concentration 0.95%-11.05%,and inoculum percent 1.59%-18.41%.A total of 20 bioleaching tests were carried out by the CCD method according to software-based designed matrix.Empirical model equations were developed according to the copper,molybdenum and rhenium recoveries obtained with these three parameters.Model equations of responses at the base of parameters were achieved by using statistical software.The model equations were then individually optimized by using quadratic programming to maximize copper,molybdenum and rhenium recoveries individually within the experimental range.The optimum conditions for copper recovery were pH 1.68,solid concentration 0.95% and the inoculum 18.41%(v/v),while molybdenum and rhenium recoveries were 2.18% and 24.41%,respectively.The predicted values for copper,molybdenum and rhenium recoveries were found to be in good agreement with the experimental values.Also jarosite formation during bioleaching tests was also investigated.展开更多
Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate.Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor.The shake flask tests ...Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate.Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor.The shake flask tests were performed with different inoculum size,solids density,pH.and temperature in order to identify optimum conditions.The highest amount of copper elimination,75%was obtained with extreme thermophilic microorganisms(at 12%inoculation,10%solids,65℃and a pH of 1.5).The highest copper elimination by mesophilic microorganisms was 55%(at 12%inoculation,5%solids,30℃at pH 2).The optimum conditions in shake flask tests were applied to 7 days batch tests in a50-L bioreactor.Extreme thermophilic experiment gave the best copper elimination of 60%(at 12%inoculation,10%solids,65℃and pH 1.5).Mesophilic test removed 50%of the copper(at 12%inoculation,10%solids,35℃at pH 2).展开更多
Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flo...Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.展开更多
This paper elaborated on the sustainability of the copper extraction process. In fact, an alternative copper extraction route from mixed sulphide ores, chalcopyrite and chalcocite using mesophilic biomass consortium a...This paper elaborated on the sustainability of the copper extraction process. In fact, an alternative copper extraction route from mixed sulphide ores, chalcopyrite and chalcocite using mesophilic biomass consortium at 33.3 °C and ferric leaching process were attempted. Bioleaching experiments were settled with a fraction size of-75+53 μm. Bacteria were used as the catalyst. A copper yield of 65.50% was obtained. On the other hand, in ferric leaching process, with a fraction size of-53+38 μm, when the temperature was increased to 70 °C, the copper leaching rate increased to 78.52%. Thus, comparatively, the mesophilic bioleaching process showed a more obvious advantage in copper extraction than leaching process with a high temperature. However, it has been resolved from the characterization performed using SEM-EDS, FTIR and XRD observations coupled with different thermodynamic approaches that, the indirect mechanism is the main leaching mechanism, with three transitory mechanisms(polysulphide, thiosulphate and elemental sulphur mechanisms) for the mixed chalcopyrite-chalcocite ore. Meanwhile, the speciation turns into Cu2 S-Cu S-Cu5 Fe S4-Cu2 S before turning into Cu SO4. While ferrous oxidation and the formation of ferric sulphate occur, and there is a formation of strong acid as bacteria digest sulphide minerals into copper sulphate at low temperature, which is why this copper production scenario requires a redox potential more than 550 m V at room temperature for high copper leaching rate.展开更多
In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 1...In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 180 r.min^-1 and 30℃ for mesophilic bacteria The conductivity of copper bioleaching liquid was determined by the electric conductivity method at temperatures ranging from 298 K to 313 K. The ionic activity coefficients were estimated using Debye-Hucker and Osager-Falkenlagen equations. Meanwhile, the effects of temperature and concentrtion on the mean ionic activity coefficients were discussed. The relative partial molar free energies, enthalpies and entropies of copper teaching solution at above experimental temperatures were calculated. The behaviors of change of relative partial molar quantities were discussed on the basis of electrolytic solution theory. Simultaneously, the thermodynamic characters of bioleaching solution with and without mesophilic bacteria were compared. The existence of mesophilic bacteria changed the Fe^3+/Fe^2+ ratio, which resulted in the difference of ionic interaction. The experimental data show that the determination of the thermodynamic properties during the bioleaching processes should be important.展开更多
Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-fl...Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-flow anaerobic sludge blanket bioremediation (TS-UASBB). With the TS-UASBB, 2 4 SO , COD, N and P in the effluent from the DS degraded significantly and their concentrations were kept at 0.2 g·L -1 , 2.0 g·L -1 , 1.0 g·L -1 and 15 mg·L -1 , respectively, in 13 batch processes for water-recycled ethanol fermentation. With the effluent used directly as dilution water, no heat-resistant bacteria were found alive. The thirteen-batch ethanol production individually achieved 10% after 48 h fermentation. The starch utilization ratio and total sugar consumption were 90% and 99.5%, respectively. The novel water-recycled bioethanol production process with ethanol fermentation and TS-UASBB has a considerable potential in other starchy and cellulosic ethanol production.展开更多
A kinetic study of biogas production from Urban Solid Waste (USW) generated in Dar es Salaam city (Tanzania) is presented. An experimental bioreactor simulating mesophilic conditions of most USW landfills was develope...A kinetic study of biogas production from Urban Solid Waste (USW) generated in Dar es Salaam city (Tanzania) is presented. An experimental bioreactor simulating mesophilic conditions of most USW landfills was developed. The goal of the study was to generate the kinetic order of reaction with respect to biodegradable organic waste and use it to model biogas production from food residues mixed with fruit waste. Anaerobic biodegradation was employed under temperature range of 28℃ - 38℃. The main controls were leachate recirculation and pH adjustments to minimize acid inhibitory effects and accelerate waste biodegradation. The experimental setup comprised of three sets of bioreactors. A biodegradation rate law in differential form was proposed and the numerical values of kinetic order and rate constant were determined using initial rate method as 0.994 and 0.3093 mol0.006·day-1, respectively. Results obtained were consistent with that found in literature and model predictions were in reasonable agreement with experimental data.展开更多
The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were sele...The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were selected for investigation. The optimum conditions for copper recovery were a pulp density of 5 g/mL, a mixed-mineral salt medium of Acidithiobacillus thiooxidans(70vol%) and Acidithiobacillus ferrooxidans(30vol%), and 10vol% of inoculum. Under these conditions, the maximum bioleaching capacity of the medium for copper recovery was determined to be approximately 99%. The effect of pulp density on the kinetics of the bioleaching process was surveyed using both da Silva's method and constrained multilinear regression analysis. The kinetics of copper dissolution followed the shrinking core model, and the process was diffusion controlled at a pulp density of 5 g/mL. Nevertheless, at higher pulp densities, the process was controlled by chemical reaction.展开更多
A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a l...A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a low-grade chalcopyrite ore. The TA grow at temperatures ranging from 40 to 80℃, with 65℃ being the optimum temperature, and at pH values of l.5 to 4.0, with an optimum pH value of 2.0. The bioleaching experiments of the chalcvpyrite ore were conducted in both laboratory batch bioreactors and leaching columns. The results obtained from the bioreactor experiments showed that the TA bioleaching rate of copper reached 97% for a 12-day leaching period, while the bioleaching rate was 32.43% for thiobacillus ferrooxidans (Tf) leaching for the same leaching time. In the case of column leaching, tests of a two-phase leaching (196 days), that is, a two-month (56 days) Tf leaching in the first phase, followed by a 140-day TA leaching in the second phase were performed. The average leaching rate of copper achieved for the 140-day TA leaching was 195mg/(L.d), while for the control experiments, it was as low as 78mg/(L .d) for the Tf leaching, indicating that the TA possesses a more powerful oxidizing ability to the chalcopyrite than Tf Therefore, it is suggested that the two-phase leaching process be applied to .for the heap leaching operations, whereas, the TA can be used in the second phase when the temperature inside the heap has increased, and the primary copper sulfide minerals have already been partially oxidized with Tf beforehand in the first phase.展开更多
Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficienc...Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficiency of the co-digestion strategy for treatment of SW and OMW mixtures. Mesophilic batch reac-tors fed with mixtures of SW and OMW showed that the two adapted sludges Gadot and Prigat exhibited the best COD removal capacity and biogas production;therefore both were selected to seed up-flow anaerobic sludge blanket (UASB) continuous reactors. During 170 days of operation, both sludges Gadot and Prigat showed high biodegradation potential. The highest COD removal of 85-95% and biogas production of 0.55 L?g-1 COD were obtained at a mixture consisting of 33% OMW and 67% SW. Under these conditions, an organic load of 28,000 mg?L-1 COD was reduced to 1,500-3,500 mg?L-1. These results strongly suggest that co-digestion technology using UASB reactors is a highly reliable and promising technology for wastewater treatment and biogas production.展开更多
The occurrence and the detection system of mesophilic and psychrotrophic aerobic sporulating microorganisms (MPAS) in raw cow's milk were studied. Samples of raw cow's bulk tank milk were taken 21 times in 14 farm...The occurrence and the detection system of mesophilic and psychrotrophic aerobic sporulating microorganisms (MPAS) in raw cow's milk were studied. Samples of raw cow's bulk tank milk were taken 21 times in 14 farms during one year. Basis of the method for MPAS assessment is the milk sample inactivation at the temperature 80-82 ℃ for 30 minutes followed by incubation in cultivation dishes at 30 -4- 1 ℃ for 3 days-mesophilic aerobic sporulates (MAS), and at 6.5 .4- 1 ℃ for 10 days-psychrotrophic aerobic sporulates (PAS). The total count of MPAS was within the span 2.5-340 CFU/mL (colony forming units). Average plate count of MPAS was 59.4 CFU/mL with variation coefficient 93.1%. MPAS count found in the same dishes at incubation for mesophilic and subsequently strictly psychrophilic microorganisms (MAS + SPAS) which enables to exclude overestimation of results by sporulates able to grow at both incubation temperatures was on average 56.9 CFU/mL what represents 95.8% out of the number of sums of individual dishes at two temperatures (MAS + PAS). Correlation coefficient of these two types of results r = 0.99 gives evidence of close dependence that is expressed by linear regression equation y = 0.9773x. We can consider the method using at first 30 .4- 1 ℃ and subsequently 6.5 -4-1℃ (MAS + SPAS) as more correct than the method with the opposite order of cultivation temperatures because of better regression coefficient of linear dependence and higher correlation coefficient in relation to the sum of independent incubations (MAS + PAS).展开更多
Creosote is used for preservation of railway ties and timbers, electric utility poles, marine and foundation piling, fences and garden furniture. Creosote-treated wood waste may cause potential contamination of soil a...Creosote is used for preservation of railway ties and timbers, electric utility poles, marine and foundation piling, fences and garden furniture. Creosote-treated wood waste may cause potential contamination of soil and water if they are not disposed properly. Creosote contains over 300 organic compounds including polycyclic aromatic hydrocarbons, phenolic compounds and heterocyclic organic compounds, many of which are toxic to human and can cause damage to kidney, liver, eyes and skin. The feasibility of using a composting technique inoculated with the cellulose degrading actinomycetesThermobifidafusca as a mesophilic/thermophilic bioremediation option to degrade phenolic compounds in creosote treated wood waste was evaluated. The temperature profile of bioremediation process clearly identified mesophilic and thermophilic phases in both experiments. Different degradation rates were observed in the mesophilic and thermophilic phases. Fluctuations of pH was observed in both experiment as the result of the breakdown of organic nitrogen to ammonium in the first week and the formation of organic acids and the loss of ammonium with the exhaust gases in the latter stage. The moisture content decreased in both trials because of the net loss of water with the exhaust gas. Both experiments achieved similar reductions in total carbon and TKN, volatile solids and phenolic compounds, cellulose and lignin indicating similar levels of microbial activities during the composting process. The stability and maturity of the final products were also similar. The inoculation of the cellulolytic-thermophilicactinomycetesThermobifidafusca did not manifest observable differences in degrading cellulose, lignin and phenolic compounds compared with the control.展开更多
Tuber aestivum/uncinatum has been widely used as food, food additives, and traditional medicine. Truffles are extremely perishable with a short postharvest life quality requiring a special handling for marketing in or...Tuber aestivum/uncinatum has been widely used as food, food additives, and traditional medicine. Truffles are extremely perishable with a short postharvest life quality requiring a special handling for marketing in order to delay its deterioration. This study aimed to assess the effects of different sanitizing methods on superficial Tuber aestivium quality ascocarp. The results showed that the best treatment was obtained by immersing the Truffle ascocarps in boiling water for 1 or 2 min where counts of total mesophilic microoraganisms (TMM) were respectively 81 and 7 CFU per g of dry Truffle ascocarps biomass, respectively. However, the highest TMM was obtained after rinsing Truffle ascocarps in 2% NaOH where recovery was 108 CFU per g of dry Truffle ascocarps biomass. Treatments applied to disinfect Truffle ascocarps were classified by increasing degree of efficiency as follows to reduce the microbial load expressed in CFU/g: Dipping in boiling water (2 min) 7 ± 3.41;dipping in boiling water (1 min) 81 ± 25.8, rinsing with alcohol 2.102 ± 13;rinsing with tap water 6.103 ± 36;rinsing with H2O2 6.104 ± 2;brushing 2.105 ± 28 and rinsing with NaOH 108 ± 15.展开更多
We analyzed the amino acid residues present in the water-soluble and transmembrane proteins of 6 thermophilic and 6 mesophilic species of the domains Archaea and Eubacteria, and characterized them as favorable or unfa...We analyzed the amino acid residues present in the water-soluble and transmembrane proteins of 6 thermophilic and 6 mesophilic species of the domains Archaea and Eubacteria, and characterized them as favorable or unfavorable. The characterization was performed by comparing the observed number of each amino acid residue to the expected number calculated from the percentage of nucleotides present in each gene. Amino acids that were more or less abundant than expected were considered as favorable or unfavorable, respectively. Comparisons of amino acid compositions indicated that the water-soluble proteins were rich in charged residues such as Glu, Asp, Lys, and His, whereas hydrophobic residues such as Trp, Phe, and Leu were abundant in transmembrane proteins. Interestingly, our results found that although the Trp residue was abundant in transmembrane proteins, it was not defined as favorable by our calculations, indicating that increased numbers of a particular amino acid does not necessary indicate it is a favorable residue. Amino acids with high G + C content such as Ala, Gly, and Pro were frequently observed as favorable in species with low G + C content. Comparatively, amino acids with low G + C content such as Phe, Tyr, Lys, Ile, and Met were frequently observed as favorable in species with high G + C content. These are the examples to increase the supply of amino acids than expected. Amino acids with neutral G + C content, i.e., Glu and Asp were favorable in water-soluble proteins from all species analyzed, and Cys was unfavorable both in water-soluble and transmembrane proteins. These results indicate that amino acid compositions are essentially determined by the nucleotide sequence of the genes, and the amino acid content is altered by a deviation from expectation.展开更多
文摘Introduction: This study was carried out to assess the quality of sheep meat sold to consumers in Saaba municipality. Methods: A preliminary survey consisted of assessing hygiene and sampling meat in butchers’ stores. To achieve this, 100 sales outlets were surveyed for their hygiene conditions. 25 mutton meat samples were sampled in the three villages in Saaba district and analyzed using conventional microbiological techniques. The analysis consisted of determining the microbiological characteristics. Results: According to the results of this study, 100% of the butchers surveyed were men of the region. Among these men, 13% had secondary education, 46% had primary education and 41% were illiterate. Of the 100 retail outlets visited, 96% of the sellers were unaware of the hygiene rules and the dangers of microorganisms. The microbiological analysis of the samples revealed that 100% of the meat was of unsatisfactory microbiological quality. The average contamination rate by total aerobic mesophilic flora, total coliforms, Staphylococcus aureus and yeasts and molds was 8.93 × 106, 3.12 × 105, 3.69 × 106, and 6.74 × 103 CFU/g respectively. No Salmonella strain was detected in any of the samples analyzed. Conclusion: Our results pointed out the unsatisfactory safety quality of the sheep meat sold in the sheep meat and good hygiene practices.
文摘Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.
基金the results of a project approved and funded by the Ministry of Education,Science and Technology Development of the Republic of Serbia(Project Nos.TR 34004 and TR 34024)the EU FP6 BioMinE project by Bioclear,the Netherlands(European project contract NMP2-CT-2005-500329-1)
文摘Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the presence of mesophilic mixed bacterial culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. A mesophilic acidophiles culture was isolated from the acidic solution of the underground copper mine of Bor, Serbia. The nutrient medium was 9K at pH 1.6. 87% of the particles were <10 µm in size, with a pulp density of 8% (w/v). Bioleaching efficiencies of 89% for zinc, 83% for copper, and 68% for iron can be achieved in the examined conditions. Kinetic analysis shows that the change in leaching corresponds to the Spencer-Topley kinetic model for diffusion-controlled topochemical reactions.
基金The National Natural Science Foundation of China under contract Nos 41406062 and 41250110530the Chinese Academy of Science Fellowship for Young Foreign Scientists under contract No.2012Y1ZA0005
文摘Microbial carbon fixation is a paramount process in the ocean especially below the photic zone both in water and sedimentary ecosystems. Autotrophic microbes that fix carbon dioxide are renowned. However, the question whether heterotrophs can also fix carbon is intriguing. Ten heterotrophically grown, identified bacterial isolates from the Sino-Pacific marine sediments were tested for autotrophic uptake potential with and without addition of electron donors. Nine of the ten isolates showed carbon uptake capacity without addition of any substrate at very low rates in the order of 10^(-8) to 10^(-4) fmol/(cell·h). The addition of manganese and ammonium at 1 mmol/L final concentration enhanced the uptake potential. Addition of 1 mmol/L final concentrations of reduced iron(10^(-6) to10^(-5) fmol/(cell·h) and sulfide(10^(-5) fmol/(cell·h) decreased the uptake potential significantly at p〈0.1. Bacterial tolerance to formaldehyde suggested propensities of anaplerotic chemical reactions that form metabolic intermediates of C-1 metabolism pathways. The isolates displayed high metabolic flexibility. With the changes in electron donors, the isolates metabolically toggled between relatively anoxic reductive iron/sulfur cycles and the oxidative cycles of manganese/ammonium and vice-versa. This property makes these microbes successful survivors in the highly dynamic Sino-Pacific sediments.
基金Project supported by the Grant-in-Aid for Science Research of Japan Society for the Promotion of Science (JSPS), Japan.
文摘Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities, i.e., β-glucosidase, N-α-benzoyl-Largininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The BAA-hydrolysing protease activity during the first 2-3 weeks was low with low pH, but was enhanced later with the pH increase. β-Glucosidase activity showed the lowest values in weeks 1-2, and recovered with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion was confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.
文摘A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35℃ for 514 d, with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m^3·d). The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand, high COD removal of 91% was obtained at two days' of hydraulic retention time (HRT), and the highest OLR of 17.5 kg COD/(m^3·d). On the other hand, only 46% COD in raw POME was transformed into biogas in which the methane content was about 70% (V/V). A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane was 56%. Volatile fatty acid (VFA) accumulation was observed in the later operation stage, and this was settled by supplementing trace metal elements. On the whole, the system exhibited good stability in terms of acidity and alkalinity. Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed.
基金supported by the National Iranian Copper Industry Co. and Geological Survey of Iran
文摘The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recoveries in a bioleaching process was investigated.Three main bioleaching parameters,namely pH,solid concentration and inoculum percent,were changed during the bioleaching tests based on CCD.The ranges of the bioleaching process variables used in the design were as follows:pH1.46-2.14,solid concentration 0.95%-11.05%,and inoculum percent 1.59%-18.41%.A total of 20 bioleaching tests were carried out by the CCD method according to software-based designed matrix.Empirical model equations were developed according to the copper,molybdenum and rhenium recoveries obtained with these three parameters.Model equations of responses at the base of parameters were achieved by using statistical software.The model equations were then individually optimized by using quadratic programming to maximize copper,molybdenum and rhenium recoveries individually within the experimental range.The optimum conditions for copper recovery were pH 1.68,solid concentration 0.95% and the inoculum 18.41%(v/v),while molybdenum and rhenium recoveries were 2.18% and 24.41%,respectively.The predicted values for copper,molybdenum and rhenium recoveries were found to be in good agreement with the experimental values.Also jarosite formation during bioleaching tests was also investigated.
基金supported by the National Iranian Copper Industry Co.
文摘Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate.Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor.The shake flask tests were performed with different inoculum size,solids density,pH.and temperature in order to identify optimum conditions.The highest amount of copper elimination,75%was obtained with extreme thermophilic microorganisms(at 12%inoculation,10%solids,65℃and a pH of 1.5).The highest copper elimination by mesophilic microorganisms was 55%(at 12%inoculation,5%solids,30℃at pH 2).The optimum conditions in shake flask tests were applied to 7 days batch tests in a50-L bioreactor.Extreme thermophilic experiment gave the best copper elimination of 60%(at 12%inoculation,10%solids,65℃and pH 1.5).Mesophilic test removed 50%of the copper(at 12%inoculation,10%solids,35℃at pH 2).
文摘Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.
文摘This paper elaborated on the sustainability of the copper extraction process. In fact, an alternative copper extraction route from mixed sulphide ores, chalcopyrite and chalcocite using mesophilic biomass consortium at 33.3 °C and ferric leaching process were attempted. Bioleaching experiments were settled with a fraction size of-75+53 μm. Bacteria were used as the catalyst. A copper yield of 65.50% was obtained. On the other hand, in ferric leaching process, with a fraction size of-53+38 μm, when the temperature was increased to 70 °C, the copper leaching rate increased to 78.52%. Thus, comparatively, the mesophilic bioleaching process showed a more obvious advantage in copper extraction than leaching process with a high temperature. However, it has been resolved from the characterization performed using SEM-EDS, FTIR and XRD observations coupled with different thermodynamic approaches that, the indirect mechanism is the main leaching mechanism, with three transitory mechanisms(polysulphide, thiosulphate and elemental sulphur mechanisms) for the mixed chalcopyrite-chalcocite ore. Meanwhile, the speciation turns into Cu2 S-Cu S-Cu5 Fe S4-Cu2 S before turning into Cu SO4. While ferrous oxidation and the formation of ferric sulphate occur, and there is a formation of strong acid as bacteria digest sulphide minerals into copper sulphate at low temperature, which is why this copper production scenario requires a redox potential more than 550 m V at room temperature for high copper leaching rate.
基金the National Basic Research Program of China (No. 2004CB619206).
文摘In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 180 r.min^-1 and 30℃ for mesophilic bacteria The conductivity of copper bioleaching liquid was determined by the electric conductivity method at temperatures ranging from 298 K to 313 K. The ionic activity coefficients were estimated using Debye-Hucker and Osager-Falkenlagen equations. Meanwhile, the effects of temperature and concentrtion on the mean ionic activity coefficients were discussed. The relative partial molar free energies, enthalpies and entropies of copper teaching solution at above experimental temperatures were calculated. The behaviors of change of relative partial molar quantities were discussed on the basis of electrolytic solution theory. Simultaneously, the thermodynamic characters of bioleaching solution with and without mesophilic bacteria were compared. The existence of mesophilic bacteria changed the Fe^3+/Fe^2+ ratio, which resulted in the difference of ionic interaction. The experimental data show that the determination of the thermodynamic properties during the bioleaching processes should be important.
基金Supported by the National High Technology Research and Development Program of China (2008AA10Z338) the National Natural Science Foundation of China (20906041)
文摘Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-flow anaerobic sludge blanket bioremediation (TS-UASBB). With the TS-UASBB, 2 4 SO , COD, N and P in the effluent from the DS degraded significantly and their concentrations were kept at 0.2 g·L -1 , 2.0 g·L -1 , 1.0 g·L -1 and 15 mg·L -1 , respectively, in 13 batch processes for water-recycled ethanol fermentation. With the effluent used directly as dilution water, no heat-resistant bacteria were found alive. The thirteen-batch ethanol production individually achieved 10% after 48 h fermentation. The starch utilization ratio and total sugar consumption were 90% and 99.5%, respectively. The novel water-recycled bioethanol production process with ethanol fermentation and TS-UASBB has a considerable potential in other starchy and cellulosic ethanol production.
文摘A kinetic study of biogas production from Urban Solid Waste (USW) generated in Dar es Salaam city (Tanzania) is presented. An experimental bioreactor simulating mesophilic conditions of most USW landfills was developed. The goal of the study was to generate the kinetic order of reaction with respect to biodegradable organic waste and use it to model biogas production from food residues mixed with fruit waste. Anaerobic biodegradation was employed under temperature range of 28℃ - 38℃. The main controls were leachate recirculation and pH adjustments to minimize acid inhibitory effects and accelerate waste biodegradation. The experimental setup comprised of three sets of bioreactors. A biodegradation rate law in differential form was proposed and the numerical values of kinetic order and rate constant were determined using initial rate method as 0.994 and 0.3093 mol0.006·day-1, respectively. Results obtained were consistent with that found in literature and model predictions were in reasonable agreement with experimental data.
基金financially supported by the National Iranian Copper Industry Co.
文摘The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were selected for investigation. The optimum conditions for copper recovery were a pulp density of 5 g/mL, a mixed-mineral salt medium of Acidithiobacillus thiooxidans(70vol%) and Acidithiobacillus ferrooxidans(30vol%), and 10vol% of inoculum. Under these conditions, the maximum bioleaching capacity of the medium for copper recovery was determined to be approximately 99%. The effect of pulp density on the kinetics of the bioleaching process was surveyed using both da Silva's method and constrained multilinear regression analysis. The kinetics of copper dissolution followed the shrinking core model, and the process was diffusion controlled at a pulp density of 5 g/mL. Nevertheless, at higher pulp densities, the process was controlled by chemical reaction.
基金This work was supported by the Yunnan Provincial Natural Science Foundation of China (No. 2000E0101M).
文摘A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a low-grade chalcopyrite ore. The TA grow at temperatures ranging from 40 to 80℃, with 65℃ being the optimum temperature, and at pH values of l.5 to 4.0, with an optimum pH value of 2.0. The bioleaching experiments of the chalcvpyrite ore were conducted in both laboratory batch bioreactors and leaching columns. The results obtained from the bioreactor experiments showed that the TA bioleaching rate of copper reached 97% for a 12-day leaching period, while the bioleaching rate was 32.43% for thiobacillus ferrooxidans (Tf) leaching for the same leaching time. In the case of column leaching, tests of a two-phase leaching (196 days), that is, a two-month (56 days) Tf leaching in the first phase, followed by a 140-day TA leaching in the second phase were performed. The average leaching rate of copper achieved for the 140-day TA leaching was 195mg/(L.d), while for the control experiments, it was as low as 78mg/(L .d) for the Tf leaching, indicating that the TA possesses a more powerful oxidizing ability to the chalcopyrite than Tf Therefore, it is suggested that the two-phase leaching process be applied to .for the heap leaching operations, whereas, the TA can be used in the second phase when the temperature inside the heap has increased, and the primary copper sulfide minerals have already been partially oxidized with Tf beforehand in the first phase.
文摘Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficiency of the co-digestion strategy for treatment of SW and OMW mixtures. Mesophilic batch reac-tors fed with mixtures of SW and OMW showed that the two adapted sludges Gadot and Prigat exhibited the best COD removal capacity and biogas production;therefore both were selected to seed up-flow anaerobic sludge blanket (UASB) continuous reactors. During 170 days of operation, both sludges Gadot and Prigat showed high biodegradation potential. The highest COD removal of 85-95% and biogas production of 0.55 L?g-1 COD were obtained at a mixture consisting of 33% OMW and 67% SW. Under these conditions, an organic load of 28,000 mg?L-1 COD was reduced to 1,500-3,500 mg?L-1. These results strongly suggest that co-digestion technology using UASB reactors is a highly reliable and promising technology for wastewater treatment and biogas production.
文摘The occurrence and the detection system of mesophilic and psychrotrophic aerobic sporulating microorganisms (MPAS) in raw cow's milk were studied. Samples of raw cow's bulk tank milk were taken 21 times in 14 farms during one year. Basis of the method for MPAS assessment is the milk sample inactivation at the temperature 80-82 ℃ for 30 minutes followed by incubation in cultivation dishes at 30 -4- 1 ℃ for 3 days-mesophilic aerobic sporulates (MAS), and at 6.5 .4- 1 ℃ for 10 days-psychrotrophic aerobic sporulates (PAS). The total count of MPAS was within the span 2.5-340 CFU/mL (colony forming units). Average plate count of MPAS was 59.4 CFU/mL with variation coefficient 93.1%. MPAS count found in the same dishes at incubation for mesophilic and subsequently strictly psychrophilic microorganisms (MAS + SPAS) which enables to exclude overestimation of results by sporulates able to grow at both incubation temperatures was on average 56.9 CFU/mL what represents 95.8% out of the number of sums of individual dishes at two temperatures (MAS + PAS). Correlation coefficient of these two types of results r = 0.99 gives evidence of close dependence that is expressed by linear regression equation y = 0.9773x. We can consider the method using at first 30 .4- 1 ℃ and subsequently 6.5 -4-1℃ (MAS + SPAS) as more correct than the method with the opposite order of cultivation temperatures because of better regression coefficient of linear dependence and higher correlation coefficient in relation to the sum of independent incubations (MAS + PAS).
文摘Creosote is used for preservation of railway ties and timbers, electric utility poles, marine and foundation piling, fences and garden furniture. Creosote-treated wood waste may cause potential contamination of soil and water if they are not disposed properly. Creosote contains over 300 organic compounds including polycyclic aromatic hydrocarbons, phenolic compounds and heterocyclic organic compounds, many of which are toxic to human and can cause damage to kidney, liver, eyes and skin. The feasibility of using a composting technique inoculated with the cellulose degrading actinomycetesThermobifidafusca as a mesophilic/thermophilic bioremediation option to degrade phenolic compounds in creosote treated wood waste was evaluated. The temperature profile of bioremediation process clearly identified mesophilic and thermophilic phases in both experiments. Different degradation rates were observed in the mesophilic and thermophilic phases. Fluctuations of pH was observed in both experiment as the result of the breakdown of organic nitrogen to ammonium in the first week and the formation of organic acids and the loss of ammonium with the exhaust gases in the latter stage. The moisture content decreased in both trials because of the net loss of water with the exhaust gas. Both experiments achieved similar reductions in total carbon and TKN, volatile solids and phenolic compounds, cellulose and lignin indicating similar levels of microbial activities during the composting process. The stability and maturity of the final products were also similar. The inoculation of the cellulolytic-thermophilicactinomycetesThermobifidafusca did not manifest observable differences in degrading cellulose, lignin and phenolic compounds compared with the control.
文摘Tuber aestivum/uncinatum has been widely used as food, food additives, and traditional medicine. Truffles are extremely perishable with a short postharvest life quality requiring a special handling for marketing in order to delay its deterioration. This study aimed to assess the effects of different sanitizing methods on superficial Tuber aestivium quality ascocarp. The results showed that the best treatment was obtained by immersing the Truffle ascocarps in boiling water for 1 or 2 min where counts of total mesophilic microoraganisms (TMM) were respectively 81 and 7 CFU per g of dry Truffle ascocarps biomass, respectively. However, the highest TMM was obtained after rinsing Truffle ascocarps in 2% NaOH where recovery was 108 CFU per g of dry Truffle ascocarps biomass. Treatments applied to disinfect Truffle ascocarps were classified by increasing degree of efficiency as follows to reduce the microbial load expressed in CFU/g: Dipping in boiling water (2 min) 7 ± 3.41;dipping in boiling water (1 min) 81 ± 25.8, rinsing with alcohol 2.102 ± 13;rinsing with tap water 6.103 ± 36;rinsing with H2O2 6.104 ± 2;brushing 2.105 ± 28 and rinsing with NaOH 108 ± 15.
文摘We analyzed the amino acid residues present in the water-soluble and transmembrane proteins of 6 thermophilic and 6 mesophilic species of the domains Archaea and Eubacteria, and characterized them as favorable or unfavorable. The characterization was performed by comparing the observed number of each amino acid residue to the expected number calculated from the percentage of nucleotides present in each gene. Amino acids that were more or less abundant than expected were considered as favorable or unfavorable, respectively. Comparisons of amino acid compositions indicated that the water-soluble proteins were rich in charged residues such as Glu, Asp, Lys, and His, whereas hydrophobic residues such as Trp, Phe, and Leu were abundant in transmembrane proteins. Interestingly, our results found that although the Trp residue was abundant in transmembrane proteins, it was not defined as favorable by our calculations, indicating that increased numbers of a particular amino acid does not necessary indicate it is a favorable residue. Amino acids with high G + C content such as Ala, Gly, and Pro were frequently observed as favorable in species with low G + C content. Comparatively, amino acids with low G + C content such as Phe, Tyr, Lys, Ile, and Met were frequently observed as favorable in species with high G + C content. These are the examples to increase the supply of amino acids than expected. Amino acids with neutral G + C content, i.e., Glu and Asp were favorable in water-soluble proteins from all species analyzed, and Cys was unfavorable both in water-soluble and transmembrane proteins. These results indicate that amino acid compositions are essentially determined by the nucleotide sequence of the genes, and the amino acid content is altered by a deviation from expectation.