Based on the atomicity and molecularity as well as the consistency ofthermodynamic properties and activities of metallic melts with their structures, the coexistencetheory of metallic melts structure involving compoun...Based on the atomicity and molecularity as well as the consistency ofthermodynamic properties and activities of metallic melts with their structures, the coexistencetheory of metallic melts structure involving compound has been suggested. According to this theory,the calculating models of mass action concentrations for different binary metallic melts have beenformulated. The calculated mass action concentrations agree well with corresponding measuredactivities, which confirms that the suggested theory can reflect the structural characteristics ofmetallic melts involving compound and that the mass action law is widely applicable to this kind ofmetallic melts.展开更多
Based on the phase diagrams, measured activities as well asDeltaG(m) and DeltaG(xs), calculating models of mass action concentrations for metallic melts involving monotectic have been formulated. The calculated result...Based on the phase diagrams, measured activities as well asDeltaG(m) and DeltaG(xs), calculating models of mass action concentrations for metallic melts involving monotectic have been formulated. The calculated results agree with practice on the whole, showing that the models deduced generally can reflect the structural characteristics of these melts. The metastable compounds formed in the melts are of the types A(2)B(3), AB(2), A(2)B(3) or AB and A(2)B(3)+AB etc..展开更多
Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively ...Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as(η+2H/πΩb2)(ηB is the viscosity under the horizontal magnetic field, ηis the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field.展开更多
High-temperature nuclear magnetic resonance(NMR)has proven to be very useful for detecting the temperatureinduced structural evolution and dynamics in melts.However,the sensitivity and precision of high-temperature NM...High-temperature nuclear magnetic resonance(NMR)has proven to be very useful for detecting the temperatureinduced structural evolution and dynamics in melts.However,the sensitivity and precision of high-temperature NMR probes are limited.Here we report a sensitive and stable high-temperature NMR probe based on laser-heating,suitable for in situ studies of metallic melts,which can work stably at the temperature of up to 2000 K.In our design,a well-designed optical path and the use of a water-cooled copper radio-frequency(RF)coil significantly optimize the signal-to-noise ratio(S/NR)at high temperatures.Additionally,a precise temperature controlling system with an error of less than±1 K has been designed.After temperature calibration,the temperature measurement error is controlled within±2 K.As a performance testing,^(27)Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ.Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than0.001 ppm per hour.This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids,such as glass transition and liquid-liquid transition.展开更多
After the investigation on the thermodynamic properties and mixingthermodynamic parameters of binary homogeneous metallic melts involving compound, peritectic as wellas solid solution, it was found that the equations ...After the investigation on the thermodynamic properties and mixingthermodynamic parameters of binary homogeneous metallic melts involving compound, peritectic as wellas solid solution, it was found that the equations of mixing free energy DELTA G^m and excess freeenergy DELTA G^(XS) of them can he expressed by the following equations: DELTA G^m = SIGMA x [SIGMAN_i DELTA G_I^(THETA) + RT(SIGMA N_j ln N_j + SIGMA N_i ln N_i )] and DELTA G^(XS) = DELTA G^m -RT(a ln a + b ln b), respectively.展开更多
After investigation on the thermodynamic properties of a small number of binarymetallic melts, the structural units of which cannot be wholly determined by the cor-responding phase diagrams, it was found that they can...After investigation on the thermodynamic properties of a small number of binarymetallic melts, the structural units of which cannot be wholly determined by the cor-responding phase diagrams, it was found that they can be determined by the principleof annexation of two kinds of solutions in binary metallic melts. According to theprinciple of annexation, calculating models of mass action concentrations for severalbinary metallic melts have been formulated. The calculated results agree well withpractice, showing that this principle is a reliable basis for determination of the struc-tural units for some binary metallic melts.展开更多
According to the ion and molecule coexistence theory, the activity model of Fe-Si-B ternary system was es- tablished, and the influence of ratio :Csi/XZe, boron content and temperature, etc. on the activity of the me...According to the ion and molecule coexistence theory, the activity model of Fe-Si-B ternary system was es- tablished, and the influence of ratio :Csi/XZe, boron content and temperature, etc. on the activity of the melt com- pound was investigated. The results show that the FeB activity is high in the liquid iron, when Xsl/XFo is 0. 5 ; the ac- tivity of boron increases with increasing the boron content for different contents of xe and xs, and the activity of boron at the ratio xFo = 0.4 is about one order of magnitude higher than that for the XFo = 0. 8; The activities of the melt compound were also affected by temperature, but the influencing extent was little. The equal activity diagrams of silicon and boron were drawn for the first time according to the model results.展开更多
The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou′s general geometric thermodynamic model and the calculated r...The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou′s general geometric thermodynamic model and the calculated results are consistent with the reported experimental data. A new model predicting the viscosity of multi-component silicate melts was established. The CaO-MnO-SiO 2,CaO-FeO-SiO 2 and FeO-MnO-SiO 2 silicate slag systems were used to verify the model.展开更多
According to phase diagrams, measured activities as well as the coexistence theory of motallic melts structure involving compound formation, the calculating models of mass action concentrations for Ni-Mn and Co-Mn me...According to phase diagrams, measured activities as well as the coexistence theory of motallic melts structure involving compound formation, the calculating models of mass action concentrations for Ni-Mn and Co-Mn melts are formulated and their thermodynamic parameters are optimized. As a result, the calculated mass action concentrations agree well with the corresponding measured activities, showing that these models can reflect the structural characteristics of both Ni-Mn and Co-Mn melts.展开更多
The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A c...The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A comparison of nucleation rate under microgravity with those on the ground and under elevated gravity has also been made展开更多
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly...Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.展开更多
The interaction of spinodal decomposition and recrystallization process, and the characteristic of recrystallization in Cu-Ni-Fe alloy aged at different temperatures after solution-treatment and cold rolling have been...The interaction of spinodal decomposition and recrystallization process, and the characteristic of recrystallization in Cu-Ni-Fe alloy aged at different temperatures after solution-treatment and cold rolling have been studied by structural analysis and Vickers hardness test. It has shown that the recrystallization of spinodal Cu -Ni-Fe alloy might be divided into 2 types: spinodal decomposition, recovery and recrystallization of two-phase microstructure take place in the deformed alloy aged below the spinodal temperature; while recrystallization of single-phase microstructure and growth of fully-recrystallized grains take place in the deformed alloy aged above the spinodal temperature. The deformed alloy aged below the spinodal temperature recrystallizes in cellular morphology.展开更多
In this work, a thorough examinations on the extractability of zinc and lead present in the steelmaking dusts using alkaline leaching process and the effectiveness of the zinc and lead separation in the resultant leac...In this work, a thorough examinations on the extractability of zinc and lead present in the steelmaking dusts using alkaline leaching process and the effectiveness of the zinc and lead separation in the resultant leaching solutions using sulfide precipitation method were made. It was found that only about 53% of zinc and over 70% of the lead could be leached out of the dusts, while the other 47% of zinc and 30% of lead were left in the leaching residues. The zinc and lead in the resultant leaching solution can be effectively and selectively separated. When the weight ratio of sodium sulfide (M.W. = 222-240) to Pb was kept at 1.8, the lead in the solution could be precipitated out quantitatively while all the zinc was remained in the solution. The zinc left in the solution can be further recovered by the addition of extra sodium sulfide with a weight ratio of sodium sulfide to the zinc over 2.6. The resultant filtrate can be recycled to the leaching of dust in the next leaching process.展开更多
Further research on metallic materials for the super critical rotator and the main pipe line of a nuclear power station is very important for developing the nuclear power industry. In this study, the mathematical mode...Further research on metallic materials for the super critical rotator and the main pipe line of a nuclear power station is very important for developing the nuclear power industry. In this study, the mathematical model for 120 t large ingot was established, and the computer program ESR3D was developed to simulate the whole electro-slag re-melting (ESR) process. This includes the electrode melting, metallic droplet falling, metal pool forming, metal pool and slag pool rising and moving, installation of top crystallizer, ingot solidifying, etc. The simulated average melting rate of the electrode was in good agreement with that in practical production. The optimized parameters were used to produce 80-120 t large ingots, and the quality of the ingots satisfied the specifications of nuclear power and the super critical generating unit.展开更多
The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Darcy's law and the assumption that the fibrous preform is treated as 'bundle of...The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Darcy's law and the assumption that the fibrous preform is treated as 'bundle of capillaries' The critical rotating speed is analyzed with the established model The influences of the metal melt mass,the rotating speed of the equipment,the casting height, the original outer radius of the metal melt and the fibrous volume fraction in fibrous preform on infilatration are studied The results show that the critical rotating speed is dependent on critical pressure, casting height, metal melt mass and the character of fibrous preform With the increase in the metal melt mass, rotating speed of the equipment and original outer radius of the metal melt, or the decrease in casting height and fibrous volume fraction in fibrous of the metal melt,or the decrease in casting height and fibrous volume fraction in fibrous preform,infiltration of metal melt for fibrous preform becomes easier.展开更多
With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the comp...With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.展开更多
The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in...The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in Haake torque rheogeniometer. By way of capillary extrusion, effects upon rheology of the in situ composites of the low melting point metals (LMPM) and coupling agent for their different variety and content, were investigated. From flow curves, the results indicate that in situ composites mixed with the LMPM are a kind of pseudoplastic fluid. If the LMPM were melted, the higher the content of the LMPM, the lower apparent viscosity of composites. Meanwhile, when the coupling agent is added into composites , the viscosity of composite will go up first and drop then. This shows that the LMPM have a promoter flow action on the polypropylene.展开更多
An expression of initial slope of melting curve of pure metals was obtained as follows: (dT_m/dP)_o=T_(mo)/c, where c=1.09 (N_(at))^(5/3)z^(-1/3), the unit of c is GPa, N_(at) is the atomic concentra- tion (in 10^(28)...An expression of initial slope of melting curve of pure metals was obtained as follows: (dT_m/dP)_o=T_(mo)/c, where c=1.09 (N_(at))^(5/3)z^(-1/3), the unit of c is GPa, N_(at) is the atomic concentra- tion (in 10^(28) m^(-3)), z is the valence, T_(mo) is the melting temperature (in k) of metal under one atmosphere. The calculated results for thirty-one metals agree well with experiments. It has also been proved that by using the free electron model of melting, the fusion equation of metals is Simon equation (T_m/T_(mo))q=1+(p/d). Two parameters q and d, which have to fit with experiments in Simon's empirical equation, now can be predicted theoretically, e.g. for Mg, giving q=1.56, d=7.88GPa, the calculated melting curve in a fairly wide pressure range (0~60GPa) is shown to be close to the experimental one.展开更多
The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. ...The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.展开更多
Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much atten...Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much attention has been paid to the study of Fe-based glass-forming melts at high temperatures.Recent investigations of these melts are categorized and reviewed.It is concluded that more efforts are still required to reveal the discipline of amorphization brought about by rapid quenching of Fe-based glass-forming melts.展开更多
文摘Based on the atomicity and molecularity as well as the consistency ofthermodynamic properties and activities of metallic melts with their structures, the coexistencetheory of metallic melts structure involving compound has been suggested. According to this theory,the calculating models of mass action concentrations for different binary metallic melts have beenformulated. The calculated mass action concentrations agree well with corresponding measuredactivities, which confirms that the suggested theory can reflect the structural characteristics ofmetallic melts involving compound and that the mass action law is widely applicable to this kind ofmetallic melts.
文摘Based on the phase diagrams, measured activities as well asDeltaG(m) and DeltaG(xs), calculating models of mass action concentrations for metallic melts involving monotectic have been formulated. The calculated results agree with practice on the whole, showing that the models deduced generally can reflect the structural characteristics of these melts. The metastable compounds formed in the melts are of the types A(2)B(3), AB(2), A(2)B(3) or AB and A(2)B(3)+AB etc..
基金Project supported by the National Natural Science Foundation of China(Grant No.51371107)
文摘Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as(η+2H/πΩb2)(ηB is the viscosity under the horizontal magnetic field, ηis the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field.
基金Project supported by the Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YZ201639)the National Key R&D Program of China(Grant No.2018YFA0703604)+1 种基金the National Natural Science Foundation of China(Grant Nos.51922102,92163108,and 52071327)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18E010002)。
文摘High-temperature nuclear magnetic resonance(NMR)has proven to be very useful for detecting the temperatureinduced structural evolution and dynamics in melts.However,the sensitivity and precision of high-temperature NMR probes are limited.Here we report a sensitive and stable high-temperature NMR probe based on laser-heating,suitable for in situ studies of metallic melts,which can work stably at the temperature of up to 2000 K.In our design,a well-designed optical path and the use of a water-cooled copper radio-frequency(RF)coil significantly optimize the signal-to-noise ratio(S/NR)at high temperatures.Additionally,a precise temperature controlling system with an error of less than±1 K has been designed.After temperature calibration,the temperature measurement error is controlled within±2 K.As a performance testing,^(27)Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ.Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than0.001 ppm per hour.This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids,such as glass transition and liquid-liquid transition.
文摘After the investigation on the thermodynamic properties and mixingthermodynamic parameters of binary homogeneous metallic melts involving compound, peritectic as wellas solid solution, it was found that the equations of mixing free energy DELTA G^m and excess freeenergy DELTA G^(XS) of them can he expressed by the following equations: DELTA G^m = SIGMA x [SIGMAN_i DELTA G_I^(THETA) + RT(SIGMA N_j ln N_j + SIGMA N_i ln N_i )] and DELTA G^(XS) = DELTA G^m -RT(a ln a + b ln b), respectively.
文摘After investigation on the thermodynamic properties of a small number of binarymetallic melts, the structural units of which cannot be wholly determined by the cor-responding phase diagrams, it was found that they can be determined by the principleof annexation of two kinds of solutions in binary metallic melts. According to theprinciple of annexation, calculating models of mass action concentrations for severalbinary metallic melts have been formulated. The calculated results agree well withpractice, showing that this principle is a reliable basis for determination of the struc-tural units for some binary metallic melts.
基金Item Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China(2009BAB45B05)
文摘According to the ion and molecule coexistence theory, the activity model of Fe-Si-B ternary system was es- tablished, and the influence of ratio :Csi/XZe, boron content and temperature, etc. on the activity of the melt com- pound was investigated. The results show that the FeB activity is high in the liquid iron, when Xsl/XFo is 0. 5 ; the ac- tivity of boron increases with increasing the boron content for different contents of xe and xs, and the activity of boron at the ratio xFo = 0.4 is about one order of magnitude higher than that for the XFo = 0. 8; The activities of the melt compound were also affected by temperature, but the influencing extent was little. The equal activity diagrams of silicon and boron were drawn for the first time according to the model results.
文摘The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou′s general geometric thermodynamic model and the calculated results are consistent with the reported experimental data. A new model predicting the viscosity of multi-component silicate melts was established. The CaO-MnO-SiO 2,CaO-FeO-SiO 2 and FeO-MnO-SiO 2 silicate slag systems were used to verify the model.
文摘According to phase diagrams, measured activities as well as the coexistence theory of motallic melts structure involving compound formation, the calculating models of mass action concentrations for Ni-Mn and Co-Mn melts are formulated and their thermodynamic parameters are optimized. As a result, the calculated mass action concentrations agree well with the corresponding measured activities, showing that these models can reflect the structural characteristics of both Ni-Mn and Co-Mn melts.
文摘The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A comparison of nucleation rate under microgravity with those on the ground and under elevated gravity has also been made
基金Project(2010CB635107) supported by the Major State Basic Research Development Program of ChinaProjects(51202064,51472081) supported by the National Natural Science Foundation of China+2 种基金Project(2013CFA085) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010016) supported by Wuhan Youth Chenguang Program of Science and Technology,ChinaProject([2013]2-22) supported by the Open Fund of Key Laboratory of Green Materials for Light Industry of Hubei Province,China
文摘Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.
文摘The interaction of spinodal decomposition and recrystallization process, and the characteristic of recrystallization in Cu-Ni-Fe alloy aged at different temperatures after solution-treatment and cold rolling have been studied by structural analysis and Vickers hardness test. It has shown that the recrystallization of spinodal Cu -Ni-Fe alloy might be divided into 2 types: spinodal decomposition, recovery and recrystallization of two-phase microstructure take place in the deformed alloy aged below the spinodal temperature; while recrystallization of single-phase microstructure and growth of fully-recrystallized grains take place in the deformed alloy aged above the spinodal temperature. The deformed alloy aged below the spinodal temperature recrystallizes in cellular morphology.
文摘In this work, a thorough examinations on the extractability of zinc and lead present in the steelmaking dusts using alkaline leaching process and the effectiveness of the zinc and lead separation in the resultant leaching solutions using sulfide precipitation method were made. It was found that only about 53% of zinc and over 70% of the lead could be leached out of the dusts, while the other 47% of zinc and 30% of lead were left in the leaching residues. The zinc and lead in the resultant leaching solution can be effectively and selectively separated. When the weight ratio of sodium sulfide (M.W. = 222-240) to Pb was kept at 1.8, the lead in the solution could be precipitated out quantitatively while all the zinc was remained in the solution. The zinc left in the solution can be further recovered by the addition of extra sodium sulfide with a weight ratio of sodium sulfide to the zinc over 2.6. The resultant filtrate can be recycled to the leaching of dust in the next leaching process.
文摘Further research on metallic materials for the super critical rotator and the main pipe line of a nuclear power station is very important for developing the nuclear power industry. In this study, the mathematical model for 120 t large ingot was established, and the computer program ESR3D was developed to simulate the whole electro-slag re-melting (ESR) process. This includes the electrode melting, metallic droplet falling, metal pool forming, metal pool and slag pool rising and moving, installation of top crystallizer, ingot solidifying, etc. The simulated average melting rate of the electrode was in good agreement with that in practical production. The optimized parameters were used to produce 80-120 t large ingots, and the quality of the ingots satisfied the specifications of nuclear power and the super critical generating unit.
基金This project is supported by National Natural Science Foundation of China(No.59771055).
文摘The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Darcy's law and the assumption that the fibrous preform is treated as 'bundle of capillaries' The critical rotating speed is analyzed with the established model The influences of the metal melt mass,the rotating speed of the equipment,the casting height, the original outer radius of the metal melt and the fibrous volume fraction in fibrous preform on infilatration are studied The results show that the critical rotating speed is dependent on critical pressure, casting height, metal melt mass and the character of fibrous preform With the increase in the metal melt mass, rotating speed of the equipment and original outer radius of the metal melt, or the decrease in casting height and fibrous volume fraction in fibrous of the metal melt,or the decrease in casting height and fibrous volume fraction in fibrous preform,infiltration of metal melt for fibrous preform becomes easier.
文摘With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.
基金Supported by Foundation for University Key Teacher by the Ministry of Education
文摘The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in Haake torque rheogeniometer. By way of capillary extrusion, effects upon rheology of the in situ composites of the low melting point metals (LMPM) and coupling agent for their different variety and content, were investigated. From flow curves, the results indicate that in situ composites mixed with the LMPM are a kind of pseudoplastic fluid. If the LMPM were melted, the higher the content of the LMPM, the lower apparent viscosity of composites. Meanwhile, when the coupling agent is added into composites , the viscosity of composite will go up first and drop then. This shows that the LMPM have a promoter flow action on the polypropylene.
文摘An expression of initial slope of melting curve of pure metals was obtained as follows: (dT_m/dP)_o=T_(mo)/c, where c=1.09 (N_(at))^(5/3)z^(-1/3), the unit of c is GPa, N_(at) is the atomic concentra- tion (in 10^(28) m^(-3)), z is the valence, T_(mo) is the melting temperature (in k) of metal under one atmosphere. The calculated results for thirty-one metals agree well with experiments. It has also been proved that by using the free electron model of melting, the fusion equation of metals is Simon equation (T_m/T_(mo))q=1+(p/d). Two parameters q and d, which have to fit with experiments in Simon's empirical equation, now can be predicted theoretically, e.g. for Mg, giving q=1.56, d=7.88GPa, the calculated melting curve in a fairly wide pressure range (0~60GPa) is shown to be close to the experimental one.
文摘The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.
基金Item Sponsored by National Natural Science Foundation of China(51501043)National Scientific and Technological Support Projects of China(2013BAE08B01)Science and Technology Program of Beijing of China(Z141100003814007)
文摘Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much attention has been paid to the study of Fe-based glass-forming melts at high temperatures.Recent investigations of these melts are categorized and reviewed.It is concluded that more efforts are still required to reveal the discipline of amorphization brought about by rapid quenching of Fe-based glass-forming melts.