The catalyzation of CoTPP for electrocarboxylation of alkyl halides, alkenes and ketones with CO_2 are studied. The electrocarboxylation of these organic compounds with CO_2 in the presenec of catalyst can occur at mo...The catalyzation of CoTPP for electrocarboxylation of alkyl halides, alkenes and ketones with CO_2 are studied. The electrocarboxylation of these organic compounds with CO_2 in the presenec of catalyst can occur at more positive potential than that of no catalyst. The products of electrocarboxylation were identified by UV, IR and GC-MS. The electrocarboxylation mechanisms of different organic compounds are discussed.展开更多
Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] ...Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] on the reaction course had been examined and it was found that T(p-Cl)PPCu presented the highest catalytic activ- ity in the reaction.The reaction conditions of toluene oxidation were optimized by using orthogonal experiment de- sign.Five relevant factors were investigated:temperature,air pressure,catalyst loading,air flow rate and reaction time.The effects of the five factors on both toluene conversion and total yield of benzaldehyde and benzyl alcohol were discussed.The research results showed that the reaction temperature was the most significant factor influenc- ing toluene oxidation.On the basis of the margin analysis,the optimum conditions for the toluene conversion and the total yield of benzaldehyde and benzyl alcohol respectively were achieved,under which the toluene conversion was up to 14.67%and the total yield of benzaldehyde and benzyl alcohol reached 5.89%.展开更多
The aerobic oxidation of p-menthane to p-menthane hydroperoxide (PMHP) in the presence of metalloporphyrins was investigated in an intermittent mode under an atmospheric pressure of air. Several important reaction p...The aerobic oxidation of p-menthane to p-menthane hydroperoxide (PMHP) in the presence of metalloporphyrins was investigated in an intermittent mode under an atmospheric pressure of air. Several important reaction parameters, such as the structure of metalloporphyrin, the air flow rate, and the temperature, were studied. The preliminary mechanism of the aerobic oxidation of p-menthane catalyzed by metalloporphyrins was also discussed. The results show that the reaction is greatly accelerated by the addition of metalloporphyrins at very low concentration, in terms of both the yield and formation rate of PMHP, and the high selectivity of PMHP is maintained during the reaction. Temperature of 120 ℃ and reaction time of around 5 h are the optimal conditions for the best result in the presence of 0.06 mmol/L monomanganeseporphyrins ((p-Cl)TPPMnC1). Furthermore, the yield of PMHP is increased remarkably when the reaction is carried out under programmed temperature compared with the constant temperature. When the reaction is catalyzed by 0.06 mmol/L((p-Cl)TPPMnCl) at the air flow rate of 600 mL/min and 120 ℃ for 4 h, and then the temperature is reduced to 110 ℃, for another 4 h, the yield of PMHP reaches 24.3 %, which is higher than that of the reaction at a constant temperature of 120 ℃ or 110 ℃ for 8 h.展开更多
Reported here is the electrocatalytic reduction of molecular oxygen in the presence of water-soluble cobalt(Ⅱ) tetrakis(4-trimethyl ammonium phenyl) porphyrin (Co(Ⅱ)TTAPP) as catalyst in solutions of various pH valu...Reported here is the electrocatalytic reduction of molecular oxygen in the presence of water-soluble cobalt(Ⅱ) tetrakis(4-trimethyl ammonium phenyl) porphyrin (Co(Ⅱ)TTAPP) as catalyst in solutions of various pH values. The overpotential of molecular oxygen reduction is reduced by ca. 200-400 mV in acidic and neutral solutions compared with several decades of millivolts in alkaline solutions, indicating that Co(Ⅱ)TTAPP possesses much higher catalytic activity in acidic and neutral solutions than in alkaline. H2TTAPP in solutions of various pH exhibits no significant catalytic activity for oxygen reduction. The significant difference in the electrocatalytic activity of Co(Ⅱ)TTAPP from that of H2TTAPP for oxygen reduction indicates that the electrocatalytic activity of Co(Ⅱ)TTAPP should be attributed to the central cobalt atom (Co(Ⅱ)) coordinated by N4 internal ring in Co(Ⅱ)TTAPP. The total number of electrons involved in oxygen reduction electrocatalyzed by Co (Ⅱ)TTAPP is 2, and the product of such reaction is H2O2 or HO2-in solutions of various pH. The reaction mechanism of oxygen reduction in acidic and alkaline solutions is also discussed.展开更多
The effects of various factors on the electrocarboxylation of organic compounds with carbon dioxide catalyzed by metalloporphyrin are studied.The optimal potential of electrocar- boxylation is -1.6 V(vs.SCE).A weak pr...The effects of various factors on the electrocarboxylation of organic compounds with carbon dioxide catalyzed by metalloporphyrin are studied.The optimal potential of electrocar- boxylation is -1.6 V(vs.SCE).A weak protic solvent methanol can enhance catalytic activity. Tetrabutylammonium iodide is the best one of five electrolytes.The yields and current efficiencies of electrocarboxylation are increased slowly as the concentration of catalyst increases.展开更多
The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,pe...The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied.展开更多
A supported Mn-porphyrin catalyst was prepared by adsorption of Mn-porphyrin on active carbon, and found to be efficient for the hydroxylation of hexane with hydrogen peroxide.
This paper reported the oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins under mild conditions without any additives. The results showed that the cobalt(II)(5,10,15,20-tetrakis(pentafluorophenyl))p...This paper reported the oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins under mild conditions without any additives. The results showed that the cobalt(II)(5,10,15,20-tetrakis(pentafluorophenyl))porphyrin was the best catalyst among the fluorinated metalloporphyrins. The conversion of ethylbenzene reached 38.6%, the selectivity to acetophenone reached 94.0%, and the turnover number is 2719 under the optimal conditions.展开更多
The synthesis and characterization of a series of metal porphyrins, MII(Por), {Por=dianionic of 5, 10, 15, 20-tetrakis [4-(4′-bromobutyloxy) phenyl]porphyrinato and 5, 10, 15, 20-tetrakis [4-(4′-butyloxypyridine bro...The synthesis and characterization of a series of metal porphyrins, MII(Por), {Por=dianionic of 5, 10, 15, 20-tetrakis [4-(4′-bromobutyloxy) phenyl]porphyrinato and 5, 10, 15, 20-tetrakis [4-(4′-butyloxypyridine bromide)phenyl]porphyrinato, M=Zn, Cu, Mn, Co, Ni, Ru-CO} were described. The complexes 3a-3e were prepared from the reactions of compound 2 with metal acetates in chloroform, and the treatment of 3a-3f with excess of pyridine gave corresponding complexes 4a-4f. These new compounds were identified by absorption spectroscopies,1H-NMR and elemental analyses. The results of biological activity testing for 4a-4f revealed that 4a and 4c had stronger inhibiting action on the growth metabolism ofEsche richia coli.展开更多
The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with differ...The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with different central ions and substituents studied,T(p-NO 2)PPCoCl and T(p-OCH 3)PPFeCl presented the highest activities for p-cresol and o-cresol oxidation reactions respectively.The molar ratio of sodium hydroxide to cresols and different reaction parameters including reaction temperature,reaction time and reaction pressure have been investigated,and 69.8%/50.4% conversions of p/o-cresol and 86.6%/26.6% selectivities for p/o-hydroxybenzaldehydes were reached under optimized conditions.展开更多
A green and efficient method for the selective aerobic oxidation of p-cresol to p-hydroxybenzaldehyde catalyzed by co-catalysts between metalloporphyrins and metal salts was investigated and developed. The relationshi...A green and efficient method for the selective aerobic oxidation of p-cresol to p-hydroxybenzaldehyde catalyzed by co-catalysts between metalloporphyrins and metal salts was investigated and developed. The relationship between the synergistic catalytic effects and the composition as well as amount of co-catalysts was investigated. Moreover, the influence of different reaction conditions was studied in details. A high p-cresol conversion (〉99%) and p-hydroxybenzaldehyde selectivity (83%) were obtained using only 1.125 × 10- 5 mol T(p-CH3O)PPFe111Cl-Co(OAc)2 used under mild, optimized reaction conditions. A possible mechanism for the reaction was also proposed. This work would be meaningful and instructive for the further researches and applications of co-catalyst system on oxidation of cresols and could give some enlightenment on the selectively catalytic oxidation of the side-chain alkyls of aromatics.展开更多
Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin cat...Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.展开更多
This letter compared catalase-, peroxidase- and cytochrome P450-like catalytic activities of 15 water-soluble metalloporphyrins produced from Fe, Mn and Co ions and 5 porphyrins. The metalloporphyrins with Fe and Mn a...This letter compared catalase-, peroxidase- and cytochrome P450-like catalytic activities of 15 water-soluble metalloporphyrins produced from Fe, Mn and Co ions and 5 porphyrins. The metalloporphyrins with Fe and Mn as central ions show relatively high catalytic activities of catalase and peroxidase at pH 11.0. Only Mn-meso-tetrakis (4-N-methylpyridinium) porpho-phine of the 15 metalloporphyrins exhibits high cytochrome P450-like activity. Effects of imidazole on the catalytic reactions were also studied.展开更多
The synthesis, characterization, and biological activities of a series of metal porphyrins were described. The complexes 3a similar to 3e were prepared from the reaction of compound 2 with M(OAc)(2) in CHCl3, and the ...The synthesis, characterization, and biological activities of a series of metal porphyrins were described. The complexes 3a similar to 3e were prepared from the reaction of compound 2 with M(OAc)(2) in CHCl3, and the treatment of 3a similar to 3f with pyridine gave corresponding complexes 4a similar to 4f. These new compounds were identified by absorption spectroscopies, H-1 NMR and elemental analysis. The results of biological activity,testing revealed that 4a and 4c had stronger inhibiting action for Escherichia coli (CCTCC AB91115).展开更多
Metalloporphyrins immobilized into NaY zeolite are described as catalysts for hydrocarbon oxyfuntionalization. Manganese(III) and iron(III)tetrakis(4-N-methylpyridyl)-porphyrin (MnP1 and FeP1), and manganese(III) and ...Metalloporphyrins immobilized into NaY zeolite are described as catalysts for hydrocarbon oxyfuntionalization. Manganese(III) and iron(III)tetrakis(4-N-methylpyridyl)-porphyrin (MnP1 and FeP1), and manganese(III) and iron(III) tetrakis(4-N-benzylpiridil)-porphyrin (MnP2 and FeP2) were impregnated (MnP1-NaYimp, FeP1-NaYimp, MnP2-NaYimp, FeP2-NaYimp, respectively) and encapsulated (MnP1-NaY, FeP1-NaY, MnP2-NaY and FeP2-NaY) into the NaY zeolite. These catalysts were used in the oxidation of (Z)-cyclooctene, cyclohexane, and adamantane by iodosylbezene (PhIO). These systems were able to epoxidize (Z)-cyclooctene with cis-epoxycyclooctane yields as high as 100%. By using cyclohexane and adamantane as substrate, the susceptibility of the benzyl groups on the porphyrin ring of the MnP materials, led to a different distribution of the oxidized products. With FePs, this susceptibility was not detected because the species responsible for the oxidations, FeIV(O)P·+, is more active than MnV(O)P. In conclusion, cationic metalloporphyrins immobilized into NaX zeolites, are good cytochrome P-450 models is less polar solvents since the selectivity of the system indicates the “in cage” solvent oxygen rebound oxidative process.展开更多
Substrate specificity is a hallmark of enzymatic catalysis.In this work,the biomimetic catalytic oxidation of styrene and cyclohexanone by iron(III)porphyrins and molecular oxygen was carried out,and remarkable differ...Substrate specificity is a hallmark of enzymatic catalysis.In this work,the biomimetic catalytic oxidation of styrene and cyclohexanone by iron(III)porphyrins and molecular oxygen was carried out,and remarkable differences in efficiency were observed.The specificity of the substrates for biomimetic catalytic oxidation was investigated by kinetics and mechanistic studies.Kinetics studies revealed that the oxidation of styrene followed Michaelis-Menten kinetics with KM=8.99 mol L^(-1),but the oxidation of cyclohexanone followed first-order kinetics with kobs=1.46×10^(-4) s^(-1),indicating that the styrene epoxidation by metalloporphyrins exhibited characteristics of enzyme-like catalysis,while the oxidation of cyclohexanone was in agreement with the general rules of chemical catalysis.Different catalytic mechanisms for the two substrates were discussed by operando electron paramagnetic resonance spectroscopy,operando UV-vis spectroscopy,and KI/starch experiments.Substrate specificity was concluded to be attributed to the stability of high-valence species and oxygen transfer rate.展开更多
The epoxidation of linear terminal olefins with metalloporphyrins in the presence of dioxygen and isobutyraldehyde under ambient temperature and atmo-spheric pressure was investigated.The results show that all olefins...The epoxidation of linear terminal olefins with metalloporphyrins in the presence of dioxygen and isobutyraldehyde under ambient temperature and atmo-spheric pressure was investigated.The results show that all olefins could be smoothly converted to epoxides with high selectivities(70%–90%).For the metalloporphyrins with different catalytic activities within 1-hexene epoxidation in the order of Fe>Mn>Co,T(o-Cl)PPFe(III)Cl was most effective,with a 41.7%yield and 80.2%selectivity of 1,2-epoxyhexane.Various amounts of catalyst were investi-gated,and it was found that with only 10ppm catalyst the yield of 1,2-epoxyhexane and turnover number(TON)could reach up to 41.9%and 41859,respectively.展开更多
Selective oxidation of o-nitrotoluene to onitrobenzaldehyde with metalloporphyrins as biomimetic catalysts was studied.The peripheral substituent around porphyrin rings and various process parameters of NaOH concentra...Selective oxidation of o-nitrotoluene to onitrobenzaldehyde with metalloporphyrins as biomimetic catalysts was studied.The peripheral substituent around porphyrin rings and various process parameters of NaOH concentration,reaction temperature,reaction time and oxygen pressure all affect the selectivity of onitrobenzaldehyde.Further,82.0%selectivity of onitrobenzaldehyde was achieved under the optimum conditions:1.0×10^(-5)mol·L^(-1)of T(p-NO_(2))PPFeCl catalyst,2.5 mol·L^(-1)of NaOH,0.2 mol·L^(-1)of o-nitrotoluene,45℃and 2.0 MPa for 6 h.展开更多
A bio-inspired approach for efficient conversion of cellulose to formic acid (FA) was developed in an aqueous alkaline medium. Metalloporphyrins mimicking cytochrome P450 exhibit efficiently and selectively catalyti...A bio-inspired approach for efficient conversion of cellulose to formic acid (FA) was developed in an aqueous alkaline medium. Metalloporphyrins mimicking cytochrome P450 exhibit efficiently and selectively catalytic per- formance in catalytic conversion of cellulose. High yield of FA about 63.7% was obtained by using sulfonated iron(IlI) porphyrin as the catalyst and O2 as the oxidant. Iron(III)-peroxo species, TSPPFemOO , was involved to cleave the C--C bonds of gluconic acid to FA in this catalytic system. This approach used relatively high concen- tration of cellulose and ppm concentration of catalyst. This work may provide a bio-inspired route to efficient con- version of cellulose to FA.展开更多
Metallodeuteroporphyrins(MDPs) were employed as the catalysts for aerobic oxidation of β-pinene in absence of solvents and additives. Allylic hydroxylation products were found to be the main products from this prot...Metallodeuteroporphyrins(MDPs) were employed as the catalysts for aerobic oxidation of β-pinene in absence of solvents and additives. Allylic hydroxylation products were found to be the main products from this protocol. The catalytic activity of MDPs with different metal nuclei and the influences of technological conditions on this reaction were investigated. This catalytic system has bright application prospect since only eco-friendly and readily available dioxygen were needed.展开更多
基金This work is supported by the National Natural Science Foundation of China
文摘The catalyzation of CoTPP for electrocarboxylation of alkyl halides, alkenes and ketones with CO_2 are studied. The electrocarboxylation of these organic compounds with CO_2 in the presenec of catalyst can occur at more positive potential than that of no catalyst. The products of electrocarboxylation were identified by UV, IR and GC-MS. The electrocarboxylation mechanisms of different organic compounds are discussed.
基金Supported by the National'Natural Science Foundation of China (No.20376018) and the National High Technology Development Program of China (No.2006AA32Z467).
文摘Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] on the reaction course had been examined and it was found that T(p-Cl)PPCu presented the highest catalytic activ- ity in the reaction.The reaction conditions of toluene oxidation were optimized by using orthogonal experiment de- sign.Five relevant factors were investigated:temperature,air pressure,catalyst loading,air flow rate and reaction time.The effects of the five factors on both toluene conversion and total yield of benzaldehyde and benzyl alcohol were discussed.The research results showed that the reaction temperature was the most significant factor influenc- ing toluene oxidation.On the basis of the margin analysis,the optimum conditions for the toluene conversion and the total yield of benzaldehyde and benzyl alcohol respectively were achieved,under which the toluene conversion was up to 14.67%and the total yield of benzaldehyde and benzyl alcohol reached 5.89%.
基金Project (20606008) supported by the National Natural Science Foundation of China
文摘The aerobic oxidation of p-menthane to p-menthane hydroperoxide (PMHP) in the presence of metalloporphyrins was investigated in an intermittent mode under an atmospheric pressure of air. Several important reaction parameters, such as the structure of metalloporphyrin, the air flow rate, and the temperature, were studied. The preliminary mechanism of the aerobic oxidation of p-menthane catalyzed by metalloporphyrins was also discussed. The results show that the reaction is greatly accelerated by the addition of metalloporphyrins at very low concentration, in terms of both the yield and formation rate of PMHP, and the high selectivity of PMHP is maintained during the reaction. Temperature of 120 ℃ and reaction time of around 5 h are the optimal conditions for the best result in the presence of 0.06 mmol/L monomanganeseporphyrins ((p-Cl)TPPMnC1). Furthermore, the yield of PMHP is increased remarkably when the reaction is carried out under programmed temperature compared with the constant temperature. When the reaction is catalyzed by 0.06 mmol/L((p-Cl)TPPMnCl) at the air flow rate of 600 mL/min and 120 ℃ for 4 h, and then the temperature is reduced to 110 ℃, for another 4 h, the yield of PMHP reaches 24.3 %, which is higher than that of the reaction at a constant temperature of 120 ℃ or 110 ℃ for 8 h.
文摘Reported here is the electrocatalytic reduction of molecular oxygen in the presence of water-soluble cobalt(Ⅱ) tetrakis(4-trimethyl ammonium phenyl) porphyrin (Co(Ⅱ)TTAPP) as catalyst in solutions of various pH values. The overpotential of molecular oxygen reduction is reduced by ca. 200-400 mV in acidic and neutral solutions compared with several decades of millivolts in alkaline solutions, indicating that Co(Ⅱ)TTAPP possesses much higher catalytic activity in acidic and neutral solutions than in alkaline. H2TTAPP in solutions of various pH exhibits no significant catalytic activity for oxygen reduction. The significant difference in the electrocatalytic activity of Co(Ⅱ)TTAPP from that of H2TTAPP for oxygen reduction indicates that the electrocatalytic activity of Co(Ⅱ)TTAPP should be attributed to the central cobalt atom (Co(Ⅱ)) coordinated by N4 internal ring in Co(Ⅱ)TTAPP. The total number of electrons involved in oxygen reduction electrocatalyzed by Co (Ⅱ)TTAPP is 2, and the product of such reaction is H2O2 or HO2-in solutions of various pH. The reaction mechanism of oxygen reduction in acidic and alkaline solutions is also discussed.
文摘The effects of various factors on the electrocarboxylation of organic compounds with carbon dioxide catalyzed by metalloporphyrin are studied.The optimal potential of electrocar- boxylation is -1.6 V(vs.SCE).A weak protic solvent methanol can enhance catalytic activity. Tetrabutylammonium iodide is the best one of five electrolytes.The yields and current efficiencies of electrocarboxylation are increased slowly as the concentration of catalyst increases.
文摘The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied.
文摘A supported Mn-porphyrin catalyst was prepared by adsorption of Mn-porphyrin on active carbon, and found to be efficient for the hydroxylation of hexane with hydrogen peroxide.
文摘This paper reported the oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins under mild conditions without any additives. The results showed that the cobalt(II)(5,10,15,20-tetrakis(pentafluorophenyl))porphyrin was the best catalyst among the fluorinated metalloporphyrins. The conversion of ethylbenzene reached 38.6%, the selectivity to acetophenone reached 94.0%, and the turnover number is 2719 under the optimal conditions.
基金Supported by the National Natural Science Foundation of China( No:2 9972 0 35 ) and the Zi-Qiang Science Foundationof Wuhan University2 0 0 0
文摘The synthesis and characterization of a series of metal porphyrins, MII(Por), {Por=dianionic of 5, 10, 15, 20-tetrakis [4-(4′-bromobutyloxy) phenyl]porphyrinato and 5, 10, 15, 20-tetrakis [4-(4′-butyloxypyridine bromide)phenyl]porphyrinato, M=Zn, Cu, Mn, Co, Ni, Ru-CO} were described. The complexes 3a-3e were prepared from the reactions of compound 2 with metal acetates in chloroform, and the treatment of 3a-3f with excess of pyridine gave corresponding complexes 4a-4f. These new compounds were identified by absorption spectroscopies,1H-NMR and elemental analyses. The results of biological activity testing for 4a-4f revealed that 4a and 4c had stronger inhibiting action on the growth metabolism ofEsche richia coli.
基金Supported by the Key Project of National Natural Science Foundation of China (21036009, 20776003)the Key Project of Natural Science Foundation of Beijing (2061001)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of the Beijing Municipality (PHR 200907105, PHR 201107104)
文摘The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with different central ions and substituents studied,T(p-NO 2)PPCoCl and T(p-OCH 3)PPFeCl presented the highest activities for p-cresol and o-cresol oxidation reactions respectively.The molar ratio of sodium hydroxide to cresols and different reaction parameters including reaction temperature,reaction time and reaction pressure have been investigated,and 69.8%/50.4% conversions of p/o-cresol and 86.6%/26.6% selectivities for p/o-hydroxybenzaldehydes were reached under optimized conditions.
基金Supported by the National Natural Science Foundation of China(21776259,21776321,21706233,21576297,21476270)
文摘A green and efficient method for the selective aerobic oxidation of p-cresol to p-hydroxybenzaldehyde catalyzed by co-catalysts between metalloporphyrins and metal salts was investigated and developed. The relationship between the synergistic catalytic effects and the composition as well as amount of co-catalysts was investigated. Moreover, the influence of different reaction conditions was studied in details. A high p-cresol conversion (〉99%) and p-hydroxybenzaldehyde selectivity (83%) were obtained using only 1.125 × 10- 5 mol T(p-CH3O)PPFe111Cl-Co(OAc)2 used under mild, optimized reaction conditions. A possible mechanism for the reaction was also proposed. This work would be meaningful and instructive for the further researches and applications of co-catalyst system on oxidation of cresols and could give some enlightenment on the selectively catalytic oxidation of the side-chain alkyls of aromatics.
基金Projects(J21103045,J1210040,J1103312) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.
文摘This letter compared catalase-, peroxidase- and cytochrome P450-like catalytic activities of 15 water-soluble metalloporphyrins produced from Fe, Mn and Co ions and 5 porphyrins. The metalloporphyrins with Fe and Mn as central ions show relatively high catalytic activities of catalase and peroxidase at pH 11.0. Only Mn-meso-tetrakis (4-N-methylpyridinium) porpho-phine of the 15 metalloporphyrins exhibits high cytochrome P450-like activity. Effects of imidazole on the catalytic reactions were also studied.
基金the National Natural Science Foundation of China is gratefully acknowledged (No. 29972035).
文摘The synthesis, characterization, and biological activities of a series of metal porphyrins were described. The complexes 3a similar to 3e were prepared from the reaction of compound 2 with M(OAc)(2) in CHCl3, and the treatment of 3a similar to 3f with pyridine gave corresponding complexes 4a similar to 4f. These new compounds were identified by absorption spectroscopies, H-1 NMR and elemental analysis. The results of biological activity,testing revealed that 4a and 4c had stronger inhibiting action for Escherichia coli (CCTCC AB91115).
文摘Metalloporphyrins immobilized into NaY zeolite are described as catalysts for hydrocarbon oxyfuntionalization. Manganese(III) and iron(III)tetrakis(4-N-methylpyridyl)-porphyrin (MnP1 and FeP1), and manganese(III) and iron(III) tetrakis(4-N-benzylpiridil)-porphyrin (MnP2 and FeP2) were impregnated (MnP1-NaYimp, FeP1-NaYimp, MnP2-NaYimp, FeP2-NaYimp, respectively) and encapsulated (MnP1-NaY, FeP1-NaY, MnP2-NaY and FeP2-NaY) into the NaY zeolite. These catalysts were used in the oxidation of (Z)-cyclooctene, cyclohexane, and adamantane by iodosylbezene (PhIO). These systems were able to epoxidize (Z)-cyclooctene with cis-epoxycyclooctane yields as high as 100%. By using cyclohexane and adamantane as substrate, the susceptibility of the benzyl groups on the porphyrin ring of the MnP materials, led to a different distribution of the oxidized products. With FePs, this susceptibility was not detected because the species responsible for the oxidations, FeIV(O)P·+, is more active than MnV(O)P. In conclusion, cationic metalloporphyrins immobilized into NaX zeolites, are good cytochrome P-450 models is less polar solvents since the selectivity of the system indicates the “in cage” solvent oxygen rebound oxidative process.
基金support from the National Natural Science Foundation of China(No.21938001 and 21878344)the National Key Research and Development Program of China(2016YFA0602900)+3 种基金the National Natural Science Foundation of ChinaSINOPEC Joint Fund(No.U1663220)Guangdong Provincial Key R&D Programme(2019B110206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01C102)Research and Innovation Team Construction Project of Guangdong University of Petrochemical Technology.
文摘Substrate specificity is a hallmark of enzymatic catalysis.In this work,the biomimetic catalytic oxidation of styrene and cyclohexanone by iron(III)porphyrins and molecular oxygen was carried out,and remarkable differences in efficiency were observed.The specificity of the substrates for biomimetic catalytic oxidation was investigated by kinetics and mechanistic studies.Kinetics studies revealed that the oxidation of styrene followed Michaelis-Menten kinetics with KM=8.99 mol L^(-1),but the oxidation of cyclohexanone followed first-order kinetics with kobs=1.46×10^(-4) s^(-1),indicating that the styrene epoxidation by metalloporphyrins exhibited characteristics of enzyme-like catalysis,while the oxidation of cyclohexanone was in agreement with the general rules of chemical catalysis.Different catalytic mechanisms for the two substrates were discussed by operando electron paramagnetic resonance spectroscopy,operando UV-vis spectroscopy,and KI/starch experiments.Substrate specificity was concluded to be attributed to the stability of high-valence species and oxygen transfer rate.
基金This work was supported by the Key Project of the Natural Science Foundation of Beijing(No.2061001)the Project of the National Natural Science Foundation of China(Grant Nos.20576005 and 20776003).
文摘The epoxidation of linear terminal olefins with metalloporphyrins in the presence of dioxygen and isobutyraldehyde under ambient temperature and atmo-spheric pressure was investigated.The results show that all olefins could be smoothly converted to epoxides with high selectivities(70%–90%).For the metalloporphyrins with different catalytic activities within 1-hexene epoxidation in the order of Fe>Mn>Co,T(o-Cl)PPFe(III)Cl was most effective,with a 41.7%yield and 80.2%selectivity of 1,2-epoxyhexane.Various amounts of catalyst were investi-gated,and it was found that with only 10ppm catalyst the yield of 1,2-epoxyhexane and turnover number(TON)could reach up to 41.9%and 41859,respectively.
基金supported by the Key Project of the Natural Science Foundation of Beijing(No.2061001)the National Natural Science Foundation of China(Grant Nos.20576005,20776003).
文摘Selective oxidation of o-nitrotoluene to onitrobenzaldehyde with metalloporphyrins as biomimetic catalysts was studied.The peripheral substituent around porphyrin rings and various process parameters of NaOH concentration,reaction temperature,reaction time and oxygen pressure all affect the selectivity of onitrobenzaldehyde.Further,82.0%selectivity of onitrobenzaldehyde was achieved under the optimum conditions:1.0×10^(-5)mol·L^(-1)of T(p-NO_(2))PPFeCl catalyst,2.5 mol·L^(-1)of NaOH,0.2 mol·L^(-1)of o-nitrotoluene,45℃and 2.0 MPa for 6 h.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 21372068, 21572049), the Science and Technology Program of Hunan Province, China (No. 2014GK3115) and the Science and Technology Program of Changsha, China (No. K1508004-11).
文摘A bio-inspired approach for efficient conversion of cellulose to formic acid (FA) was developed in an aqueous alkaline medium. Metalloporphyrins mimicking cytochrome P450 exhibit efficiently and selectively catalytic per- formance in catalytic conversion of cellulose. High yield of FA about 63.7% was obtained by using sulfonated iron(IlI) porphyrin as the catalyst and O2 as the oxidant. Iron(III)-peroxo species, TSPPFemOO , was involved to cleave the C--C bonds of gluconic acid to FA in this catalytic system. This approach used relatively high concen- tration of cellulose and ppm concentration of catalyst. This work may provide a bio-inspired route to efficient con- version of cellulose to FA.
基金funded by the Fundamental Research Funds for Jiangsu Key Lab of Biomass Energy and Material(No.JSBEM-S-201605)the National Natural Science Foundation of China(No.31600466)the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(No.CAFYBB2014QA022)
文摘Metallodeuteroporphyrins(MDPs) were employed as the catalysts for aerobic oxidation of β-pinene in absence of solvents and additives. Allylic hydroxylation products were found to be the main products from this protocol. The catalytic activity of MDPs with different metal nuclei and the influences of technological conditions on this reaction were investigated. This catalytic system has bright application prospect since only eco-friendly and readily available dioxygen were needed.