期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Magnetic ordering induced magnetodielectric effect in Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5)
1
作者 金昊 黄帅 +4 位作者 万凯奇 朱长明 王海欧 苏昆朋 霍德璇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期588-594,共7页
Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications.In this paper,we have investigated the structure,magnetic property,and magnetodielectric(... Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications.In this paper,we have investigated the structure,magnetic property,and magnetodielectric(MD) effect in Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5) poly crystalline samples,which possess a non-centrosymmetric polar structure with space group Pna2_(1).In Ho_(2)Cu_(2)O_(5),Ho^(3+) and Cu^(2+) sublattices order simultaneously,exhibiting a typical paramagnetic to antiferromagnetic transition at 13.1 K.While for Yb_(2)Cu_(2)O_(5),two magnetic transitions which originate from the orderings of Yb^(3+)(7.8 K) and Cu^(2+)(13.5 K) sublattices are observed.A magnetic field induced metamagnetic transition is obtained in these two cuprates below Neel temperature(T_(N)).By means of dielectric measurement,distinct MD effect is demonstrated by the dielectric anomaly at T_(N.)Meanwhile,the MD effect is found to be directly related to the metamagnetic transition.Due to the specific spin configuration and different spin evolution in the magnetic field,a positive MD effect is formed in Ho_(2)Cu_(2)O_(5),and a negative one is observed in Yb_(2)Cu_(2)O_(5).The spontaneous dielectric anomaly at T_(N) is regarded as arising from the shifts in optical phonon frequencies,and the magnetoelectric coupling is used to interpret the magnetic field induced MD effect.Moreover,an H-T phase diagram is constructed for Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5) based on the results of isothermal magnetic and dielectric hysteresis loops. 展开更多
关键词 magnetic ordering metamagnetic transition magnetodielectric effect
下载PDF
Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume–Capel model
2
作者 müt Temizer 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期350-359,共10页
The dynamic magnetic behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model is examined, within a mean-field approach, under a time-dependent oscillating magnetic field. To describe the kinetics of the system... The dynamic magnetic behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model is examined, within a mean-field approach, under a time-dependent oscillating magnetic field. To describe the kinetics of the system, Glauber- type stochastic dynamics has been utilized. The mean-field dynamic equations of the model are obtained from the Master equation. Firstly, these dynamic equations are solved to find the phases in the system. Then, the dynamic phase transition temperatures are obtained by investigating the thermal behavior of dynamic sublattice magnetizations. Moreover, from this investigation, the nature of the phase transitions (first- or second-order) is characterized. Finally, the dynamic phase diagrams are plotted in five different planes. It is found that the dynamic phase diagrams contain the paramagnetic (P), antiferromagnetic (AF5/2, AF3/2, AF1/2) phases and five different mixed phases. The phase diagrams also display many dynamic critical points, such as tricritical point, triple point, quadruple point, double critical end point and separating point. 展开更多
关键词 metamagnetism spin-5/2 Blume-Capel model dynamic phase transitions dynamic phase dia-grams Glauber-type stochastic dynamics
下载PDF
Magnetic properties and magnetic entropy changes of La1-xPrxFe11.5Si1.5 compounds with 0 ≤ x ≤ 0.5 被引量:4
3
作者 沈俊 高博 +4 位作者 闫丽琴 李养贤 张宏伟 胡凤霞 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3848-3852,共5页
Magnetic properties and magnetic entropy changes in LaFe11.5Si1.5 have been investigated by partially substituting Pr by La. It is found that La1-xPrxFe11.5Si1.5 compounds remain cubic NaZn13-type structures even when... Magnetic properties and magnetic entropy changes in LaFe11.5Si1.5 have been investigated by partially substituting Pr by La. It is found that La1-xPrxFe11.5Si1.5 compounds remain cubic NaZn13-type structures even when the Pr content is increased to 0.5, i.e. x = 0.5. Substitution of Pr for La leads to a reduction in both the crystal constant and the Curie temperature. A stepwise magnetic behaviour in the isothermal magnetization curves is observed, indicating that the characteristic of the itinerant electron metamagnetic (IEM) transition above Tc becomes more prominent with the Pr content increasing. As a result, the magnetic entropy change is remarkably enhanced from 23.0 to 29.4 J/kg·K as the field changes from 0 to 5T, with the value of x increasing from 0 to 0.5. It is more attractive that the magnetic entropy changes for all samples are shaped into high plateaus in a wide range of temperature, which is highly favourable for Ericsson-type magnetic refrigeration. 展开更多
关键词 La1-xPrxFe11.5Si1.5 compounds magnetic entropy change magnetic property itinerant electron metamagnetic transition
下载PDF
Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys 被引量:1
4
作者 张成亮 王敦辉 +3 位作者 陈健 王廷志 谢广喜 朱纯 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期8-11,共4页
The magnetic phase transition and magnetocaloric effects in Fe-doped MnNiGe alloys are investigated. The substitution of Fe for Ni decreases the structural transition temperature remarkably, resulting in the magnetost... The magnetic phase transition and magnetocaloric effects in Fe-doped MnNiGe alloys are investigated. The substitution of Fe for Ni decreases the structural transition temperature remarkably, resulting in the magnetostructural transition occurring between antiferromagnetic and ferromagnetic states in MnNil_χFexGe alloy. Owing to the enhanced ferromagnetic coupling induced by the substitution of Fe, metamagnetic behaviour is also observed in TiNiSi-type phase of MnNil-xFezGe alloys at temperature below the structural transition temperature. 展开更多
关键词 magnetostructural transition metamagnetic magnetocaloric effect
下载PDF
Giant Volume Magnetostriction Caused by Itinerant Electron Metamagnetic Transition and Pronounced Invar Effects in La(Fe_xSi_(1-x))_(13) Compounds 被引量:1
5
作者 K.Fukamichi and A.Fujita (Department of Materials Science, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Sendai 980-8579, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期167-171,共5页
A first-order itinerant electron metamagnetic (IEM) transition above the Curie temperature Tc for ferromagnetic La(Fe_xSi_1-x)13 compounds has been confirmed by applying magnetic field. The volume change just above T_... A first-order itinerant electron metamagnetic (IEM) transition above the Curie temperature Tc for ferromagnetic La(Fe_xSi_1-x)13 compounds has been confirmed by applying magnetic field. The volume change just above T_C for x=0.88 is huge of about 1.5%, which is caused by a large magnetic moment induced by the IEM transition. These compounds have a possibility for practical applications as giant magnetostrictive materials. Pronounced Invar effects bring about a negative thermal expansion below TC, closely correlated with the negative mode-mode coupling among spin fluctuations. 展开更多
关键词 COMPOUNDS Fe_xSi Giant Volume Magnetostriction Caused by Itinerant Electron Metamagnetic Transition and Pronounced Invar Effects in La
下载PDF
Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon
6
作者 杜乾衡 陈国富 +8 位作者 杨文云 华慕欣 杜红林 王常生 刘顺荃 韩景智 周栋 张焱 杨金波 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期551-555,共5页
The structure and magnetic properties of MnCoSil_xPx (x = 0.054).50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the s... The structure and magnetic properties of MnCoSil_xPx (x = 0.054).50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the same time, the temperature of metamagnetic transition from a low-temperature non-collinear ferromagnetic state to a high-temperature ferromagnetic state decreases and a new magnetic transition from a higher-magnetization ferromagnetic state to a lower- magnetization ferromagnetic state is observed in each of these compounds for the first time. This is explained by the changes of crystal structure and distance between Mn and Si atoms with the increase of temperature according to the high- temperature XRD result. The metamagnetic transition is found to be a second-order magnetic transition accompanied by a low inversed magnetocaloric effect (1.0 J·kg-1 ·K- 1 at 5 T) with a large temperature span (190 K at 5 T) compared with the scenario of MnCoSi. The changes in the order of metamagnetic transition and structure make P-doped MoCoSi compounds good candidates for the study of magnetoelastic coupling and the modulation of magnetic phase transition. 展开更多
关键词 metamagnetic transition magnetoelastic coupling magnetocaloric effect
下载PDF
Magnetocaloric effect in ErCo2 compound
7
作者 邹君鼎 沈保根 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期1817-1821,共5页
The ErCo2 compound is prepared by arc-melting and its entropy changes are calculated using Maxwell relation. Its entropy change reaches 38 J/(kg·K) and its refrigerant capacity achieves 291 J/kg at 0-5 T. The m... The ErCo2 compound is prepared by arc-melting and its entropy changes are calculated using Maxwell relation. Its entropy change reaches 38 J/(kg·K) and its refrigerant capacity achieves 291 J/kg at 0-5 T. The mean field approximation is used to calculate the magnetic entropy of ErCo2 compound. Results estimated by using the Maxwell relation deviate from mean field approximation calculations in ferrimagnetic state; however, the data obtained by the two ways are consistent in the vicinity of phase transition or at higher temperatures. This indicates that entropy changes are mainly derived from magnetic degree of freedom, and the lattice has almost no contribution to the entropy change in the vicinity of phase transition but its influence is obvious in the ferrimagnetic state below TC. 展开更多
关键词 magnetocaloric effect mean field approximation metamagnetic transition
下载PDF
Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds
8
作者 邹君鼎 沈保根 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3843-3847,共5页
Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds are studied by DC magnetic measurement. With increasing content of Fe, the entropy changes decrease slightly, though the Curie temperature is tuned... Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds are studied by DC magnetic measurement. With increasing content of Fe, the entropy changes decrease slightly, though the Curie temperature is tuned from 231 K (x = 0) to 303 K (x = 0.1). Magnetic entropies of TbCo2 compound are calculated by using mean field approximation (MFA). Results estimated by using Maxwell relation are consistent with that of MFA calculation. It is shown that the entropy changes are mainly derived from the magnetic entropy changes. The lattice has almost no contribution to the entropy change in the vicinity of phase transition. 展开更多
关键词 magnetocaloric effect mean field approximation metamagnetic transition
下载PDF
Large magnetoresistance in metamagnetic CoMnSi_(0.88)Ge_(0.12) alloy
9
作者 张成亮 王敦辉 +3 位作者 曹庆琪 轩海成 马胜灿 都有为 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期513-516,共4页
The magneto-transport properties are investigated in metamagnetic CoMnSi0.ssGe0.12 alloy. By applying a magnetic field or increasing temperature, a metamagnetic phase transition from antiferromagnetic to ferromagnetic... The magneto-transport properties are investigated in metamagnetic CoMnSi0.ssGe0.12 alloy. By applying a magnetic field or increasing temperature, a metamagnetic phase transition from antiferromagnetic to ferromagnetic is observed in this alloy. Around the metamagnetic phase transition, CoMnSi0.88Ge0.12 alloy exhibits a large and negative magnetoresistance effect (-32%) under a magnetic field of 20 kOe (1Oe = 79.5775 A/m), which is ascribed to the spin-dependent scattering of conduction electrons. 展开更多
关键词 metamagnetic MAGNETORESISTANCE
下载PDF
Coexistence of positive and negative magnetic entropy changes in CeMn_2(Si_(1-x)Ge_x)_2 compounds
10
作者 左文亮 胡凤霞 +1 位作者 孙继荣 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期444-447,共4页
A series of CeMn2(Si1-xGex)2(x = 0.2, 0.4, 0.6, 0.8) compounds are prepared by the arc-melting method. All the samples primarily crystallize in the Th Cr2Si2-type structure. The temperature dependences of zero-fie... A series of CeMn2(Si1-xGex)2(x = 0.2, 0.4, 0.6, 0.8) compounds are prepared by the arc-melting method. All the samples primarily crystallize in the Th Cr2Si2-type structure. The temperature dependences of zero-field-cooled(ZFC) and FC magnetization measurements show a transition from antiferromagnetic(AFM) state to ferromagnetic(FM) state at room temperature with the increase of the Ge concentration. For x = 0.4, the sample exhibits two kinds of phase transitions with increasing temperature: from AFM to FM and from FM to paramagnetic(PM) at around TN-197 K and T C-300 K,respectively. The corresponding Arrott curves indicate that the AFM–FM transition is of first-order character and the FM–PM transition is of second-order character. Meanwhile, the coexistence of positive and negative magnetic entropy changes can be observed, which are corresponding to the AFM–FM and FM–PM transitions, respectively. 展开更多
关键词 magnetocaloric effect CeMn2(Si0.6Ge0.4)2 compound metamagnetic transition positive entropy change
下载PDF
Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound 被引量:1
11
作者 王一旭 张虎 +7 位作者 吴美玲 陶坤 李亚伟 颜天宝 龙克文 龙腾 庞铮 龙毅 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期398-402,共5页
The magnetic properties and magnetocaloric effects (MCE) of HoNiGa compound are investigated systematically. The HoNiGa exhibits a weak antiferromagnetic (AFM) ground state below the Neel temperature TN of 10 K, a... The magnetic properties and magnetocaloric effects (MCE) of HoNiGa compound are investigated systematically. The HoNiGa exhibits a weak antiferromagnetic (AFM) ground state below the Neel temperature TN of 10 K, and the AFM ordering could be converted into ferromagnetic (FM) ordering by external magnetic field. Moreover, the fie/d-induced FM phase exhibits a high saturation magnetic moment and a large change of magnetization around the transition temperature, which then result in a large MCE. A large -△SM of 22.0 J/kg K and a high RC value of 279 J/kg without magnetic hysteresis are obtained for a magnetic field change of 5 T, which are comparable to or even larger than those of some other magnetic refrigerant materials in the same temperature range. Besides, the μ0H2/3 dependence of |△SPKM| well follows the linear fitting according to the mean-field approximation, suggesting the nature of second-order FM-PM magnetic transition under high magnetic fields. The large reversible MCE induced by metamagnetic transition suggests that HoNiGa compound could be a promising material for magnetic refrigeration in low temperature range. 展开更多
关键词 rare-earth compound magnetocaloric effect metamagnetic transition
全文增补中
One-dimensional metal phosphonates based on 6-phosphononicotinic acid:A structural and magnetic study 被引量:2
12
作者 WANG PengFei, DUAN Yan & ZHENG LiMin State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China 《Science China Chemistry》 SCIE EI CAS 2010年第10期2112-2117,共6页
The reactions of 6-phosphononicotinic acid (pnaH3) and metal salts result in three new compounds, namely, M(pnaH)-(H2O)3·H2O [M = Co(Ⅱ) (1), Ni(Ⅱ) (2), Zn(Ⅱ) (3)]. These compounds are isostructural and contain... The reactions of 6-phosphononicotinic acid (pnaH3) and metal salts result in three new compounds, namely, M(pnaH)-(H2O)3·H2O [M = Co(Ⅱ) (1), Ni(Ⅱ) (2), Zn(Ⅱ) (3)]. These compounds are isostructural and contain 21 helical chains made up of corner-sharing {MO5N} octahedra and {PO3C} tetrahedra. The chains are further connected by extensive hydrogen bonds to form a three-dimensional supramolecular structure. Magnetic studies reveal that dominant antiferromagnetic interactions are mediated in both 1 and 2. Interestingly the dehydrated compound 1 shows metamagnetic behavior at low temperature. 展开更多
关键词 carboxylate-phosphonate coordination polymer magnetic property metamagnetism
原文传递
Magnetic properties of cobalt-based oxypnictide SmCoAsO 被引量:3
13
作者 LI YuKe TONG Jun +4 位作者 HAN Han ZHANG Li TAO Qian CAO GuangHan XU ZhuAn 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第7期1194-1198,共5页
The magnetic properties of cobalt-based oxypnictides SmCoAsO are investigated by measuring magnetization,magnetoresistance and specific heat.The compound undergoes a ferromagnetic(FM) transition around Tc of 80 K,and ... The magnetic properties of cobalt-based oxypnictides SmCoAsO are investigated by measuring magnetization,magnetoresistance and specific heat.The compound undergoes a ferromagnetic(FM) transition around Tc of 80 K,and a ferromagnetic to antiferromagnetic(AFM) transition below TN1 of about 45 K,and finally an AFM order of Sm ion at TN2 of 5.6 K.The weak FM order should originate from the itinerant 3d electrons of Co ions in the CoAs layers.We propose that the magnetic structure should be A-type AFM,which means that the FM order remains within the CoAs layer and the magnetic coupling between the CoAs layers becomes AFM below TN1 of 45 K.The AFM coupling between the CoAs layers should be very weak.A magnetic field μ0H of about 2 T may cause an AFM-FM metamagnetic transition.A rich magnetic phase diagram is established and the interplay between the 3d electrons of Co ions and 4f electrons of Sm ions is discussed. 展开更多
关键词 oxypnictides magnetic properties phase diagram metamagnetic transition
原文传递
Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire 被引量:3
14
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期44-48,共5页
An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way sh... An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way shape memory effect is mainly owing to the internal stress caused by the retained martensite in austenite matrix,as revealed by transmission electron microscopy observations and highenergy X-ray diffraction experiments.After superelastic training for 30 loading/unloading cycles at room temperature,the amount of retained martensite increased and the recoverable strain of two-way shape memory effect increased significantly to 2.2%.Furthermore,a giant recoverable strain of 11.2%was attained under a bias stress of 300 MPa in the trained microwire.These properties confer this microwire great potential for micro-actuation applications. 展开更多
关键词 Metamagnetic shape memory alloys Two-way shape memory effect MICROWIRE Recoverable strain MICROSTRUCTURE
原文传递
Corrosion behavior and magnetocaloric effect of FeNi(1J85) coated LaFe_(11.6)Si_(1.4)/Sn composites 被引量:3
15
作者 Xi Zhao Ping Fang +3 位作者 Yongbai Tang Yungui Chen Lingtong Zhou Huaqiang Guo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第6期633-637,共5页
The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investiga... The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investigated systematically. The results show that the corrosion resistance of FeNi coated LaFe_(11.6)Si_(1.4)Sn composites is better than that of LaFe_(11.6)Si_(1.4)/Sn composites in deionized water. The maximum magnetic entropy change((-△S_M)^(max)) and relative cooling power(RCP) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites are 13.30 J/(kg-K) and 146.25 J/kg, respectively, which are larger than that((-△S_M)^(max), 10.65 J/(kg·K) and RCP, 106.53 J/kg) of LaFe_(11.6)Si_(1.4)/Sn composites in a low magnetic field change of 2 T. FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites possess a more negative slope. The improvement of magnetic properties is due to high permeability FeNi permalloy(1 J85) which improves the itinerant-electron metamagnetic(IEM) transition. So, the method of coating FeNi can provide a new idea for enhancing the corrosion resistance and magnetocaloric effect of La(Fe_xSi_(1-x))_(13)-based materials. 展开更多
关键词 FeNi COATED LaFe11.6Si1.4/Sn COMPOSITES Hot PRESSING Corrosion resistance Magnetic entropy change Relative cooling power Itinerant-electron metamagnetic transition
原文传递
Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy 被引量:1
16
作者 Jing Bai Die Liu +7 位作者 Jianglong Gu Xinjun Jiang Xinzeng Liang Ziqi Guan Yudong Zhang Claude Esling Xiang Zhao Liang Zuo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第15期46-51,共6页
The Ni43.75Mn37.5In12.5Co6.25 alloy was obtained by using the spark plasma sintering(SPS)technique.The martensitic transformation,magnetic and mechanical properties of the SPS alloy were investigated.Key findings demo... The Ni43.75Mn37.5In12.5Co6.25 alloy was obtained by using the spark plasma sintering(SPS)technique.The martensitic transformation,magnetic and mechanical properties of the SPS alloy were investigated.Key findings demonstrate that the martensitic transformation temperature of this alloy is about 10 K lower than that of the as-cast one.Both SPS and as-cast alloys show a 7 layered modulated martensite(7M)at room temperature.The compressive fracture strength and strain of the SPS alloy increase by 176.92%and 33.33%compared with the as-cast alloy,achieving 1440 MPa and 14%,respectively.The maximum magnetic entropy change Smis 17.1 J kg^(-1)K^(-1)for the SPS alloy at the magnetic field of 5 T. 展开更多
关键词 Spark plasma sintering Metamagnetic shape memory alloy Mechanical property Martensitic TRANSFORMATION Magnetocaloric effect
原文传递
Influence of bismuth on magnetism and magnetocaloric properties of LaFe_(11.6)Si_(1.4) intermetallic compound 被引量:1
17
作者 A.Boutahar K.Zehani +2 位作者 L.Bessais H.Lassri E.K.Hlil 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第7期740-745,共6页
Crystal structure, magnetic properties and magnetocaloric effects (MCE) of La1-xBixFe1 1.4Si1.6 (x=0.0 and 0.1) compounds were investigated by X-ray diffraction and magnetization measurements. The La1-xBixFe11.4Si... Crystal structure, magnetic properties and magnetocaloric effects (MCE) of La1-xBixFe1 1.4Si1.6 (x=0.0 and 0.1) compounds were investigated by X-ray diffraction and magnetization measurements. The La1-xBixFe11.4Si1.6 compounds presented a cubic NaZnx3 type structure. First, the magnetization behavior and the magnetic transition were analyzed in terms of Landau theory. Then, Bi substitution for La in La1-xBixFe11.4Si1.6 compounds led to a decrease in magnetic entropy change (-△SM^max) but an increase in Curie temperature (Tc) significantly. The significant increase of Tc by Bi substitution from 202.5 to 256 K for x=0.0 and x=0.1 respectively was attributed to an increase in the Fe-Fe exchange interactions. Moreover, magnetocaloric effect was calculated in terms of isothermal magnetic entropy change. The maximum values of (-△SM^max ) of La1-xBixFe11.4Si1.6 for x=-0.0 and 0.1 compounds were found to be, respectively, 22.56 and 4.36 J/(kg.K) under an applied magnetic field change of 5 T. For the same applied magnetic field (μ0H=5 T), the relative cooling power (RCP) values were found to vary between 487 and 296 J/kg. 展开更多
关键词 NaZn13 itinerant-electron metamagnetic transition magnetocaloric effects rare earths
原文传递
Experimental isothermal section phase diagram of Ho-Fe-In at 773 K and magnetic properties of Ho_(12)Fe_(2.08)In_(2.92) alloy 被引量:1
18
作者 Xiang Chen Chao Ni 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期987-994,共8页
The isothermal section of the Ho-Fe-In system at 773 K has been constructed by X-ray powder diffraction.One known structure ternary compound Er_(12)Fe_(2) In_(3)-type Ho_(12)Fe_(2) In_(3) has been confirmed.At the sam... The isothermal section of the Ho-Fe-In system at 773 K has been constructed by X-ray powder diffraction.One known structure ternary compound Er_(12)Fe_(2) In_(3)-type Ho_(12)Fe_(2) In_(3) has been confirmed.At the same time,solid solutions are not detected in Ho-Fe-In system at 773 K.The magnetic transition and magnetocaloric effect of Ho_(12)Fe_(2.08)In_(2.92) alloy with Er_(12)Fe_(2) In_(3)-type structure were investigated by magnetic susceptibility and isothermal magnetization measurements.One normal antiferromagnetic-paramagnetic transition and another abnormal one are discovered at 18 and 76 K in ground state,respectively.Owing to a first-order field-induced metamagnetic transition(antiferromagnetic-ferromagnetic) at/below the Neel temperature of 18 K),the negative entropy changes are observed at corresponding temperature.There is only a second-order ferromagnetic-paramagnetic transition near Curie temperature(TC),the maximum entropy change(Δ_(Smax)) values are-6.14 J·kg^(-1)·K^(-1) at 3 K and 7.88 J·kg^(-1)·K^(-1) at 28 K in a field range of 0-7 T.The reversible relative cooling power corresponding to negative entropy change can reach about 600 J·kg^(-1) in an wide operating temperature region Δ_(Tcycl)=74 K from 16 to90 K,which suggests that Ho_(12)Fe_(2.08)In_(2.92) could be a potential material for magnetic refrigeration in the corresponding temperature range. 展开更多
关键词 Re_(3(x+y))(T2)_(x)X_(y)phase Metamagnetic transition Magnetothermal properties Ho-Fe-In alloy
原文传递
Multiple magnetic transitions in single crystals of Ce12Fe57.5As41 and La12Fe57.5As41
19
作者 Wei Wu Jianlin Luo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2018年第12期53-57,共5页
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41).The availability of a complete set of data enabled a side-by-side... Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41).The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds.Both compounds exhibited multiple magnetic orders within 2-300 K and metamagnetic transitions at various fields.Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41),respectively,followed by antiferromagnetic type spin reorientations near Curie temperatures.The magnetic properties underwent complex evolution in the magnetic field for both compounds.An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce_(12)Fe_(57.5)As_(41).The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure.A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce_(12)Fe_(57.5)As_(41).A temperature-field phase diagram was present for these two rare earth systems.In addition,a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150-300 K,which is rarely found in 3D-based compounds.It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons. 展开更多
关键词 MULTIPLE magnetic phase TRANSITIONS metamagnetic TRANSITION KONDO SCATTERING
原文传递
Effect of a magnetic field on magnetic entropy change in LaFe_(11.7)Si_(1.3) compound
20
作者 张炜 李波 +3 位作者 千正男 张静云 张宏伟 苏文辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第3期239-242,共4页
The magnetocaloric effect of LaFe11.7Si1.3 compound was investigated under an external magnetic field up to 9 T.The magnetization changed drastically at the Curie temperature TC under different fields and TC increased... The magnetocaloric effect of LaFe11.7Si1.3 compound was investigated under an external magnetic field up to 9 T.The magnetization changed drastically at the Curie temperature TC under different fields and TC increased with the applied fields.The magnetic entropy change |?SM| vs temperature peak consisted of a spike and a plateau.The spike was a spurious result,while the plateau part resulted from the field-induced itinerant-electron metamagnetic(IEM) transition above TC,which went up with magnetic fields increasing.The width of the magnetic entropy change increased with magnetic fields at a rate of dL?S /dT^4 K/T. 展开更多
关键词 MAGNETOCALORIC Curie temperature itinerant-electron metamagnetic transition rare earths
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部