期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
nitiation of ER Body Formation and Indole Glucosinolate Metabolism by the Plastidia Retrograde Signaling Metabolite, MEcPP 被引量:1
1
作者 Jin-Zheng Wang Baohua Li +12 位作者 Yanmei Xiao Yu Ni Haiyan Ke Panyu Yang Amancio de Souza Marta Bjornson Xiang He Zhouxin Shen Gerd Ulrich Balcke Steve P. Briggs Alain Tissier Daniel J. Kliebenstein Katayoon Dehesh 《Molecular Plant》 SCIE CAS CSCD 2017年第11期1400-1416,共17页
Plants have evolved tightly regulated signaling networks to respond and adapt to environmental perturbations, but the nature of the signaling hub(s) involved have remained an enigma. We have previously established t... Plants have evolved tightly regulated signaling networks to respond and adapt to environmental perturbations, but the nature of the signaling hub(s) involved have remained an enigma. We have previously established that methylerythritol cyclodiphosphate (MEcPP), a precursor of plastidial isoprenoids and a stress- specific retrograde signaling metabolite, enables cellular readjustments for high-order adaptive functions. Here, we specifically show that MEcPP promotes two Brassicaceae-specific traits, namely endoplasmic reticulum (ER) body formation and induction of indole glucosinolate (IGs) metabolism selectively, via tran- scriptional regulation of key regulators NAIl for ER body formation and MYB51/122 for IGs biosynthesis). The specificity of MEcPP is further confirmed by the lack of induction of wound-inducible ER body genes as well as IGs by other altered methylerythritol phosphate pathway enzymes. Genetic analyses revealed MEcPP-mediated COil-dependent induction of these traits. Moreover, MEcPP signaling integrates the biosynthesis and hydrolysis of IGs through induction of nitrile-specifier protein1 and reduction of the sup- pressor, ESM1, and production of simple nitriles as the bioactive end product. The findings position the plastidial metabolite, MEcPP, as the initiation hub, transducing signals to adjust the activity of hard- wired gene circuitry to expand phytochemical diversity and alter the associated subcellular structure required for functionality of the secondary metabolites, thereby tailoring plant stress responses. 展开更多
关键词 GLUCOSINOLATES ER body retrograde signaling MEP pathway mecpp stress
原文传递
Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2
2
作者 Liping Zeng Maria Fernanda Gomez Mendez +6 位作者 Jingzhe Guo Jishan Jiang Bailong Zhang Hao Chen Brandon Le Haiyan Ke Katayoon Dehesh 《Molecular Plant》 SCIE 2024年第6期884-899,共16页
Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists.To address this,we performed a suppressor screen of the ceh1 mutant,which contains elevated 2-C-methyl-d... Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists.To address this,we performed a suppressor screen of the ceh1 mutant,which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate(MEcPP)levels,and identified the gain-of-function mutant impα-9,which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP.Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1(ASK1)abundance,a pivotal component in the proteasome degradation pathway.This increase in ASK1 prompts the degradation of IMPα-9.Moreover,we uncovered a protein-protein interaction between IMPα-9 and TPR2,a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance.Significantly,the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants,highlighting the critical role of a single amino acid alteration in maintaining their association.Disruption of their interaction results in the reversal of MEcPP-associated phenotypes.Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin.They function together to suppress the expression of stress-response genes under normal conditions,but this suppression is alleviated in response to stress through the degradation of the suppressing machinery.The biological relevance of our discoveries was validated under high light stress,marked by MEcPP accumulation,elevated ASK1 levels,IMPα-9 degredation,reduced TPR2 abundance,and subsequent activation of a network of stress-response genes.In summary,our study collectively unveils fresh insights into plant adaptive mechanisms,highlighting intricate interactions among retrograde signaling,the proteasome,and nuclear transport machinery. 展开更多
关键词 plastidial retrograde signal mecpp ASK1 impα-9 TPR2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部