The purpose of the investigation is the study of the physico-chemical properties and electro-catalytic characteristics of the Nafion and MF-4SK membranes with the author’s nanoparticles (A. Revina, 2008) incorporated...The purpose of the investigation is the study of the physico-chemical properties and electro-catalytic characteristics of the Nafion and MF-4SK membranes with the author’s nanoparticles (A. Revina, 2008) incorporated into the perfluoro- sulphonated cationic membranes. An important advance in the creation of new nano-composite materials with poly-functional activity is the inclusion of nanoparticles of various metals (Pd, Pt, Ag) in these membranes. Polymer ion exchange membranes represent widely applicable materials in various areas of modern nanotechnologies. The obtained nanocomposites on the base of included nanoparticles have the perspective properties and polyfunctional activity for the applications.展开更多
The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of ph...The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.展开更多
文摘The purpose of the investigation is the study of the physico-chemical properties and electro-catalytic characteristics of the Nafion and MF-4SK membranes with the author’s nanoparticles (A. Revina, 2008) incorporated into the perfluoro- sulphonated cationic membranes. An important advance in the creation of new nano-composite materials with poly-functional activity is the inclusion of nanoparticles of various metals (Pd, Pt, Ag) in these membranes. Polymer ion exchange membranes represent widely applicable materials in various areas of modern nanotechnologies. The obtained nanocomposites on the base of included nanoparticles have the perspective properties and polyfunctional activity for the applications.
文摘The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.