A perimeter traffic signal control strategy is proposed based on the macroscopic fundamental diagram theory(MFD)to solve the signal control problem in oversaturated states.First,the MFD of a specific regional network ...A perimeter traffic signal control strategy is proposed based on the macroscopic fundamental diagram theory(MFD)to solve the signal control problem in oversaturated states.First,the MFD of a specific regional network can be derived using VSS IM simulation software.Secondly,the maximum number of cumulative vehicles that the network can accommodate is determined based on the MFD.Then,through monitoring the influx flow,the number of vehicles existing in and exiting from the network,a perimeter traffic control model is proposed to optimize the signal timing of the boundary intersections.Finally,a virtual network simulation model is established and three different kinds o f traffic demand are loaded into the network.Simulation results show that a fer the strategy implementation,the number o f vehicles accumulating in the network can be kept near the optimal value,while the number o f both entering and exiting vehicles increases significantly and the road network can be maintained at a large capacity.Simultaneously,the queue length at the approach of the border intersections is reasonably controlled and vehicles entering and exiting the network can maintain a more efficient and stable speed.The network performance indices such as the average traffic delay and average number of stops can be improved to a certain degree,thus verifying the effectiveness and feasibility of the perimeter control strategy.展开更多
Recent studies have observed hysteresis loops in the macroscopic fundamental diagram (MFD). In particular, for the same network density, higher network flows occur during congestion onset than during congestion offset...Recent studies have observed hysteresis loops in the macroscopic fundamental diagram (MFD). In particular, for the same network density, higher network flows occur during congestion onset than during congestion offset. To evaluate management strategies using the MFD, investigating the relationship between the size of these loops and network performance is needed. The existing literature has mainly discussed correlating loop width (difference in density) and height (capacity drop) with congestion heterogeneity, but has failed to prove a relationship between the capacity drop and traffic conditions. Moreover, quantification of the MFD loop in complex multimodal networks has not been investigated. The objective of this paper covers these aspects. We simulated the Sioux Falls network with different mode-share ratios (car and bus users) based on a multi-agent simulation, MATSim. We investigated the relationships between MFD loop size and congestion heterogeneity (standard deviation of density) and network performance (average passenger travel time), and found that both were directly correlated with loop width, while weakly correlated with loop height. Moreover, we divided the MFD loop into two parts according to congestion onset and offset periods and found that the heights of the two parts had opposite effects. Accordingly, we show why the relationship between capacity drop and congestion heterogeneity is not found in the literature. We also found that network performance inversely affected the height of part of the loop while the height of its other part increased with an increase in congestion heterogeneity. These results help to evaluate network performance in the presence of MFD hysteresis, leading to elaborated management decisions.展开更多
The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shang...The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shanghai urban expressway network. The existence of MFD in the Shanghai urban expressway network is proved based on two weeks' data.Moreover, the hysteresis phenomena is present in most days and the network exhibits different hysteresis loops under different traffic situations. The relationship between the hysteresis phenomena and the inhomogeneity of traffic distribution is verified. The MFDs in the years of 2009 and 2012 are compared. The hysteresis loop still exists in 2012, which further verifies the existence of the hysteresis phenomenon. The direct relationship between the length of the hysteresis loop( ΔO) and the congestion is proved based on sufficient data. The width of the hysteresis loop, i. e., the drop in network flow( ΔQ) has no relationship with the congestion, and it varies from day to day under different traffic situations.展开更多
Vehicle emissions calculation methods mostly use ownership information or annual road monitoring data as the activity level to calculate air pollutant emissions,but it is hard to reflect either the emissions intensity...Vehicle emissions calculation methods mostly use ownership information or annual road monitoring data as the activity level to calculate air pollutant emissions,but it is hard to reflect either the emissions intensity under different conditions or the spatiotemporal characteristics in various sections based on such approaches.This paper presents a method based on the Macroscopic Fundamental Diagram and real-time traffic data to calculate vehicle emissions,which could reflect the operation conditions and emission characteristics of vehicles.Following the‘Technical Guide for the Compiling of Road Vehicle Air Pollutant Emissions Inventories’,the emissions of three roads with different lane numbers and road grades in Beijing were estimated and verified using this method.Compared with monitoring data,the average deviations of the traffic flow on the Fifth Expressway,Jingfu National Highway,and Jingzhou Provincial Highway were?25.5%,?26.5%,and?13.4%,respectively,and the average deviations of nitrogen oxides emissions were?27.7%,?12.9%,and?12%,respectively.This method showed good application potentials to construct the emissions inventory applied to the block-scale model and analyze the spatiotemporal distribution characteristics of motor vehicle emissions in urban areas.展开更多
A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result...A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.展开更多
为了改善交通网络运行状况,根据车流密度的差异对宏观路网进行子区划分,提出了面向多个宏观基本图(Macroscopic fundamental diagram,MFD)子区的边界协调控制方法.根据划分的多个子区间邻接关系和流入流出交通流率,建立了路网车流平衡方...为了改善交通网络运行状况,根据车流密度的差异对宏观路网进行子区划分,提出了面向多个宏观基本图(Macroscopic fundamental diagram,MFD)子区的边界协调控制方法.根据划分的多个子区间邻接关系和流入流出交通流率,建立了路网车流平衡方程.通过与最佳累积车辆数进行比较,确定了拥挤度高的子区边界交叉口最佳流入与流出的交通流量;进而建立了以整个路网旅行完成流率最大、平均行程时间和平均延误最小的多目标边界协调优化模型,并通过自适应遗传算法对多目标函数进行求解.以存在4个MFD子区的实际路网为分析对象,对比仿真结果表明所提方法可有效提高路网运行效率、缓解拥堵状况.展开更多
为了解决交通高峰时段城市区域路网过大的交通需求引起的路网通行效率下降以及区域内部交通流分布的异质性产生的道路资源浪费等问题.本文提出了基于区域路网固有属性宏观基本图(Macroscopic fundamental diagram,MFD)的过饱和区域控制...为了解决交通高峰时段城市区域路网过大的交通需求引起的路网通行效率下降以及区域内部交通流分布的异质性产生的道路资源浪费等问题.本文提出了基于区域路网固有属性宏观基本图(Macroscopic fundamental diagram,MFD)的过饱和区域控制优化模型,建立了边界控制信号和内部控制信号目标函数的双层规划优化,进一步设计了基于BP(Back propagation)神经网络的自适应动态规划(Adaptive dynamic programming,ADP)模型,对建立的双层规划区域交通信号进行求解,实例仿真结果验证了本文方法的有效性.通过本文的研究分析,对城市区域交通的需求管控、拥堵政策制定等城市区域交通管理具有一定的指导意义.展开更多
针对城市路网中区域性的大范围交通拥堵问题,提出了基于宏观基本图(Macroscopic Fundamental Diagram,MFD)的多子区协调控制策略,以提升路网的整体运行效益.该策略将城市区域路网划分为多个子区,每个子区的交通流又划分为内部流和转移流...针对城市路网中区域性的大范围交通拥堵问题,提出了基于宏观基本图(Macroscopic Fundamental Diagram,MFD)的多子区协调控制策略,以提升路网的整体运行效益.该策略将城市区域路网划分为多个子区,每个子区的交通流又划分为内部流和转移流,综合两者建立了基于MFD的多子区交通流模型,并给出了对各子区交通流诱导时的边界约束条件;通过调节子区边界控制输入,设计了边界反馈控制器对各子区转移流进行动态诱导,继而进行了迭代分析,以判断其是否满足边界约束,并对控制器进行了Lyapunov稳定性分析.仿真结果表明,所提策略使城市区域路网中各子区车辆总数渐近收敛于设定值,且整体平均流量提高了约11%,大范围交通拥堵状况得到明显缓解.展开更多
过于集中的流量分配易导致出口匝道和与之相衔接的地面道路过饱和,进而影响快速路和地面路网的通行效率.为提高路网中车辆通过快速路到达目的地的通行效率,基于地面路网宏观基本图(Macroscopic Fundamental Diagram,MFD),以出口匝道通...过于集中的流量分配易导致出口匝道和与之相衔接的地面道路过饱和,进而影响快速路和地面路网的通行效率.为提高路网中车辆通过快速路到达目的地的通行效率,基于地面路网宏观基本图(Macroscopic Fundamental Diagram,MFD),以出口匝道通行能力和与之相衔接的地面路网承载能力为约束条件,以整个路网的车辆总行程时间最短为优化目标,建立快速路出口匝道流量分配模型.根据宏观网络车流平衡方程,采用改进的遗传算法对模型进行求解.最后,通过实际路网验证了模型的有效性.结果表明,该模型可有效提高车辆通过快速路到达目的地的通行效率,同时降低出行成本.展开更多
针对交通运行指数(Traffic Performance Index,TPI)合理值取值问题,将宏观基本图(Mac⁃roscopic Fundamental Diagram,MFD)模型与交通运行指数模型相结合,提出理论效能最优交通指数的求解方法.首先,利用各等级道路交通流基本图模型,建立...针对交通运行指数(Traffic Performance Index,TPI)合理值取值问题,将宏观基本图(Mac⁃roscopic Fundamental Diagram,MFD)模型与交通运行指数模型相结合,提出理论效能最优交通指数的求解方法.首先,利用各等级道路交通流基本图模型,建立全路网MFD,寻找路网理论效能最优状态点;其次,以速度为连接,将该点映射至基于严重拥堵里程比的交通运行指数模型中,得到理论效能最优交通指数;最后,以北京市全路网及行政区为例进行实证研究.结果表明:全路网的理论效能最优交通指数为6.42,东城区、西城区、海淀区和朝阳区理论效能最优交通指数依次为6.86,6.80,6.76,4.58.朝阳区理论效能最优交通指数最低,其路网性能优于其他三区.该方法为交通管理和交通出行提供直观参考,并为制定交通管理政策提供理论支撑.展开更多
区域边界控制在缓解城市区域交通拥堵方面具有巨大的潜力,但同时容易导致区域边界处形成严重的排队现象。为了解决这一问题,结合高铁站周围路网的交通特性,提出了一种将交通诱导与区域边界控制相结合的基于宏观基本图(Macroscopic Funda...区域边界控制在缓解城市区域交通拥堵方面具有巨大的潜力,但同时容易导致区域边界处形成严重的排队现象。为了解决这一问题,结合高铁站周围路网的交通特性,提出了一种将交通诱导与区域边界控制相结合的基于宏观基本图(Macroscopic Fundamental Diagrams,MFD)的诱导-控制方法。首先,为满足同质性要求,划分路网子区,建立各子区的宏观交通流平衡方程,确定每个子区最佳的车辆数积累;其次,根据各子区的交通状态,实时更新诱导-控制措施,在优先使用交通诱导方式的前提下对高铁站周围路网的交通流进行动态管控;最后,以西安北站周围路网为分析对象,通过仿真分析,对比了无区域边界控制、单一边界控制和诱导-控制三种情况下的管控效果。结果表明,在诱导-控制条件下,区域的平均车速较其他两种情况下分别提高了25.39%和4.61%,平均车辆延误分别减少了28.22%和10.05%,尤其是车辆在落客区的延误明显减少。基于MFD的诱导-控制方法可有效缓解高峰客流时段高铁站周围路网的拥堵,提高客流和车流在高铁站的集散效率。展开更多
基金The National Natural Science Foundation of China(No.51308227)the Fundamental Research Funds for the Central Universities(No.201522087)+1 种基金the Science and Technology Planning Project of Guangdong Province(No.2016A030305001)the Project of Department of Communications of Guangdong Province(No.2015-02-070)
文摘A perimeter traffic signal control strategy is proposed based on the macroscopic fundamental diagram theory(MFD)to solve the signal control problem in oversaturated states.First,the MFD of a specific regional network can be derived using VSS IM simulation software.Secondly,the maximum number of cumulative vehicles that the network can accommodate is determined based on the MFD.Then,through monitoring the influx flow,the number of vehicles existing in and exiting from the network,a perimeter traffic control model is proposed to optimize the signal timing of the boundary intersections.Finally,a virtual network simulation model is established and three different kinds o f traffic demand are loaded into the network.Simulation results show that a fer the strategy implementation,the number o f vehicles accumulating in the network can be kept near the optimal value,while the number o f both entering and exiting vehicles increases significantly and the road network can be maintained at a large capacity.Simultaneously,the queue length at the approach of the border intersections is reasonably controlled and vehicles entering and exiting the network can maintain a more efficient and stable speed.The network performance indices such as the average traffic delay and average number of stops can be improved to a certain degree,thus verifying the effectiveness and feasibility of the perimeter control strategy.
文摘Recent studies have observed hysteresis loops in the macroscopic fundamental diagram (MFD). In particular, for the same network density, higher network flows occur during congestion onset than during congestion offset. To evaluate management strategies using the MFD, investigating the relationship between the size of these loops and network performance is needed. The existing literature has mainly discussed correlating loop width (difference in density) and height (capacity drop) with congestion heterogeneity, but has failed to prove a relationship between the capacity drop and traffic conditions. Moreover, quantification of the MFD loop in complex multimodal networks has not been investigated. The objective of this paper covers these aspects. We simulated the Sioux Falls network with different mode-share ratios (car and bus users) based on a multi-agent simulation, MATSim. We investigated the relationships between MFD loop size and congestion heterogeneity (standard deviation of density) and network performance (average passenger travel time), and found that both were directly correlated with loop width, while weakly correlated with loop height. Moreover, we divided the MFD loop into two parts according to congestion onset and offset periods and found that the heights of the two parts had opposite effects. Accordingly, we show why the relationship between capacity drop and congestion heterogeneity is not found in the literature. We also found that network performance inversely affected the height of part of the loop while the height of its other part increased with an increase in congestion heterogeneity. These results help to evaluate network performance in the presence of MFD hysteresis, leading to elaborated management decisions.
基金The National Natural Science Foundation of China(No.51238008)
文摘The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shanghai urban expressway network. The existence of MFD in the Shanghai urban expressway network is proved based on two weeks' data.Moreover, the hysteresis phenomena is present in most days and the network exhibits different hysteresis loops under different traffic situations. The relationship between the hysteresis phenomena and the inhomogeneity of traffic distribution is verified. The MFDs in the years of 2009 and 2012 are compared. The hysteresis loop still exists in 2012, which further verifies the existence of the hysteresis phenomenon. The direct relationship between the length of the hysteresis loop( ΔO) and the congestion is proved based on sufficient data. The width of the hysteresis loop, i. e., the drop in network flow( ΔQ) has no relationship with the congestion, and it varies from day to day under different traffic situations.
基金This work was supported by the Green Shoots Plan,China[No.GS201826]the National Key Research and Development Program of China[2016YFC0208103]+1 种基金the National Natural Science Foundation of China[No.21607008]Special Project of Application basic Preface of Wuhan Science and Technology Bureau[No.2018060401011310].
文摘Vehicle emissions calculation methods mostly use ownership information or annual road monitoring data as the activity level to calculate air pollutant emissions,but it is hard to reflect either the emissions intensity under different conditions or the spatiotemporal characteristics in various sections based on such approaches.This paper presents a method based on the Macroscopic Fundamental Diagram and real-time traffic data to calculate vehicle emissions,which could reflect the operation conditions and emission characteristics of vehicles.Following the‘Technical Guide for the Compiling of Road Vehicle Air Pollutant Emissions Inventories’,the emissions of three roads with different lane numbers and road grades in Beijing were estimated and verified using this method.Compared with monitoring data,the average deviations of the traffic flow on the Fifth Expressway,Jingfu National Highway,and Jingzhou Provincial Highway were?25.5%,?26.5%,and?13.4%,respectively,and the average deviations of nitrogen oxides emissions were?27.7%,?12.9%,and?12%,respectively.This method showed good application potentials to construct the emissions inventory applied to the block-scale model and analyze the spatiotemporal distribution characteristics of motor vehicle emissions in urban areas.
基金supported by the National Natural Science Foundation of China(Grant No.72201088,71871077,71925001)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2022GDSK0040,JZ2023YQTD0073),which are gratefully acknowledged.
文摘A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.
文摘为了改善交通网络运行状况,根据车流密度的差异对宏观路网进行子区划分,提出了面向多个宏观基本图(Macroscopic fundamental diagram,MFD)子区的边界协调控制方法.根据划分的多个子区间邻接关系和流入流出交通流率,建立了路网车流平衡方程.通过与最佳累积车辆数进行比较,确定了拥挤度高的子区边界交叉口最佳流入与流出的交通流量;进而建立了以整个路网旅行完成流率最大、平均行程时间和平均延误最小的多目标边界协调优化模型,并通过自适应遗传算法对多目标函数进行求解.以存在4个MFD子区的实际路网为分析对象,对比仿真结果表明所提方法可有效提高路网运行效率、缓解拥堵状况.
文摘针对城市路网中区域性的大范围交通拥堵问题,提出了基于宏观基本图(Macroscopic Fundamental Diagram,MFD)的多子区协调控制策略,以提升路网的整体运行效益.该策略将城市区域路网划分为多个子区,每个子区的交通流又划分为内部流和转移流,综合两者建立了基于MFD的多子区交通流模型,并给出了对各子区交通流诱导时的边界约束条件;通过调节子区边界控制输入,设计了边界反馈控制器对各子区转移流进行动态诱导,继而进行了迭代分析,以判断其是否满足边界约束,并对控制器进行了Lyapunov稳定性分析.仿真结果表明,所提策略使城市区域路网中各子区车辆总数渐近收敛于设定值,且整体平均流量提高了约11%,大范围交通拥堵状况得到明显缓解.
文摘过于集中的流量分配易导致出口匝道和与之相衔接的地面道路过饱和,进而影响快速路和地面路网的通行效率.为提高路网中车辆通过快速路到达目的地的通行效率,基于地面路网宏观基本图(Macroscopic Fundamental Diagram,MFD),以出口匝道通行能力和与之相衔接的地面路网承载能力为约束条件,以整个路网的车辆总行程时间最短为优化目标,建立快速路出口匝道流量分配模型.根据宏观网络车流平衡方程,采用改进的遗传算法对模型进行求解.最后,通过实际路网验证了模型的有效性.结果表明,该模型可有效提高车辆通过快速路到达目的地的通行效率,同时降低出行成本.
文摘针对交通运行指数(Traffic Performance Index,TPI)合理值取值问题,将宏观基本图(Mac⁃roscopic Fundamental Diagram,MFD)模型与交通运行指数模型相结合,提出理论效能最优交通指数的求解方法.首先,利用各等级道路交通流基本图模型,建立全路网MFD,寻找路网理论效能最优状态点;其次,以速度为连接,将该点映射至基于严重拥堵里程比的交通运行指数模型中,得到理论效能最优交通指数;最后,以北京市全路网及行政区为例进行实证研究.结果表明:全路网的理论效能最优交通指数为6.42,东城区、西城区、海淀区和朝阳区理论效能最优交通指数依次为6.86,6.80,6.76,4.58.朝阳区理论效能最优交通指数最低,其路网性能优于其他三区.该方法为交通管理和交通出行提供直观参考,并为制定交通管理政策提供理论支撑.
文摘区域边界控制在缓解城市区域交通拥堵方面具有巨大的潜力,但同时容易导致区域边界处形成严重的排队现象。为了解决这一问题,结合高铁站周围路网的交通特性,提出了一种将交通诱导与区域边界控制相结合的基于宏观基本图(Macroscopic Fundamental Diagrams,MFD)的诱导-控制方法。首先,为满足同质性要求,划分路网子区,建立各子区的宏观交通流平衡方程,确定每个子区最佳的车辆数积累;其次,根据各子区的交通状态,实时更新诱导-控制措施,在优先使用交通诱导方式的前提下对高铁站周围路网的交通流进行动态管控;最后,以西安北站周围路网为分析对象,通过仿真分析,对比了无区域边界控制、单一边界控制和诱导-控制三种情况下的管控效果。结果表明,在诱导-控制条件下,区域的平均车速较其他两种情况下分别提高了25.39%和4.61%,平均车辆延误分别减少了28.22%和10.05%,尤其是车辆在落客区的延误明显减少。基于MFD的诱导-控制方法可有效缓解高峰客流时段高铁站周围路网的拥堵,提高客流和车流在高铁站的集散效率。