期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
均生函数与BP神经网络耦合模拟预测模型(MGF-BP-I)的建立与应用 被引量:3
1
作者 刘丹辉 马龙 +3 位作者 刘廷玺 杜志军 王静茹 黄星 《水文》 CSCD 北大核心 2016年第6期7-15,共9页
水文气候因子模拟预测对气候变化研究、农业墒情预报、生态环境改善、水资源合理开发利用等具有一定参考意义。均生函数、BP神经网络及其结合改进方式在模拟预测中各有优点,被广泛应用,但仍有进一步改进空间。针对MGF、MGF-OSR、MGF-OSR... 水文气候因子模拟预测对气候变化研究、农业墒情预报、生态环境改善、水资源合理开发利用等具有一定参考意义。均生函数、BP神经网络及其结合改进方式在模拟预测中各有优点,被广泛应用,但仍有进一步改进空间。针对MGF、MGF-OSR、MGF-OSR-BP等方法粗选因子集、粗选集组合筛选、收敛适应性、精度控制等可改进空间,进一步发挥均生函数和BP神经网络优势,建立了MGF-BP-I模拟预测模型。利用MGF-OSR、MGF-OSR-BP、MGF-BP-I对科尔沁沙地区域平均年降水进行了模拟预测。结果表明,建模期MGF-OSR-BP、MGF-BP-I拟合效果均较好,MGF-BP-I建模阶段最优模式精度优于MGF-OSR-BP,MGF-BP-I整体同时最优模式结果也非常好。检验期,MGF-BP-I检验阶段最优及整体同时最优两种模式拟合效果最好,相比其他模式精度有所提高。MGF-BP-I考虑更加全面,充分发挥了均生函数和BP神经网络优势,精度远高于MGF-OSR和MGF-OSR-BP,MGF-BP-I整体同时最优模式更符合实际应用,效果理想,可用于水文气候因子模拟预测。 展开更多
关键词 均生函数 BP神经网络 耦合模拟 mgf-bp-i 预测 科尔沁沙地
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部