In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) t...In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) to provide an efficient dataset for modeling suction response through machine learning. Twocharacteristic parameters representing suction response during wetting processes, i.e. response time andmean reduction rate of suction, are formulated through multi-gene genetic programming (MGGP) usingeight selected influential parameters including depth, initial soil suction, vegetation- and atmosphererelated parameters. An error standardebased performance evaluation indicated that MGGP has appreciable potential for model development when working with even fewer than 100 data. Global sensitivityanalysis revealed the importance of tree canopy and mean wind speed to estimation of response timeand indicated that initial soil suction and rainfall amount have an important effect on the estimatedsuction reduction rate during a wetting process. Uncertainty assessment indicated that the two MGGPmodels describing suction response after rainfall are reliable and robust under uncertain conditions. Indepth analysis of spatial variations in suction response validated the robustness of two obtained MGGPmodels in prediction of suction variation characteristics under natural conditions.展开更多
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement...The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.展开更多
A key stage for Kriging interpolation is the estimating of variogram model, which characterizes the spatial behavior of the variables of interest. But most traditional kriging interpolation has finite types of empiric...A key stage for Kriging interpolation is the estimating of variogram model, which characterizes the spatial behavior of the variables of interest. But most traditional kriging interpolation has finite types of empirical variogram model, and sometimes, the optimal type of variogram model can not be find, which result in decreasing interpolation accuracy. In this paper, we explore the use of Multi-Gene Genetic Programming (MGGP) to automatically find an empirical variogram model that fits on an experimental variogram. Empirical variogram estimation based on MGGP, in contrast with traditional method need not select type of basic variogram model and can directly get both the functional type as well as the coefficients of the optimal variogram. The results of case study show that the proposed method can avoid the subjectivity in choosing the type of variogram models and can adaptively fit variogram according to the real data structure, which improves the interpolation accuracy of kriging significantly.展开更多
基金the financial support funded by the Science and Technology Development Fund of Macao SAR (Grant Nos. 0026/2020/AFJ and SKL-IOTSC(UM)-2021-2023)the Funds for University of Macao (Grant No. MYRG2018-00173-FST)
文摘In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) to provide an efficient dataset for modeling suction response through machine learning. Twocharacteristic parameters representing suction response during wetting processes, i.e. response time andmean reduction rate of suction, are formulated through multi-gene genetic programming (MGGP) usingeight selected influential parameters including depth, initial soil suction, vegetation- and atmosphererelated parameters. An error standardebased performance evaluation indicated that MGGP has appreciable potential for model development when working with even fewer than 100 data. Global sensitivityanalysis revealed the importance of tree canopy and mean wind speed to estimation of response timeand indicated that initial soil suction and rainfall amount have an important effect on the estimatedsuction reduction rate during a wetting process. Uncertainty assessment indicated that the two MGGPmodels describing suction response after rainfall are reliable and robust under uncertain conditions. Indepth analysis of spatial variations in suction response validated the robustness of two obtained MGGPmodels in prediction of suction variation characteristics under natural conditions.
基金the financial support from the University of Pittsburgh Anthony Gill Chair and the Impactful Resilient Infrastructure Science and Engineering Consortium(IRISE)at University of Pittsburgh.
文摘The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.
文摘A key stage for Kriging interpolation is the estimating of variogram model, which characterizes the spatial behavior of the variables of interest. But most traditional kriging interpolation has finite types of empirical variogram model, and sometimes, the optimal type of variogram model can not be find, which result in decreasing interpolation accuracy. In this paper, we explore the use of Multi-Gene Genetic Programming (MGGP) to automatically find an empirical variogram model that fits on an experimental variogram. Empirical variogram estimation based on MGGP, in contrast with traditional method need not select type of basic variogram model and can directly get both the functional type as well as the coefficients of the optimal variogram. The results of case study show that the proposed method can avoid the subjectivity in choosing the type of variogram models and can adaptively fit variogram according to the real data structure, which improves the interpolation accuracy of kriging significantly.