期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Multi-perspective analysis on rainfall-induced spatial response of soil suction in a vegetated soil 被引量:1
1
作者 Zhiliang Cheng Wanhuan Zhou Chen Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1280-1291,共12页
In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) t... In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) to provide an efficient dataset for modeling suction response through machine learning. Twocharacteristic parameters representing suction response during wetting processes, i.e. response time andmean reduction rate of suction, are formulated through multi-gene genetic programming (MGGP) usingeight selected influential parameters including depth, initial soil suction, vegetation- and atmosphererelated parameters. An error standardebased performance evaluation indicated that MGGP has appreciable potential for model development when working with even fewer than 100 data. Global sensitivityanalysis revealed the importance of tree canopy and mean wind speed to estimation of response timeand indicated that initial soil suction and rainfall amount have an important effect on the estimatedsuction reduction rate during a wetting process. Uncertainty assessment indicated that the two MGGPmodels describing suction response after rainfall are reliable and robust under uncertain conditions. Indepth analysis of spatial variations in suction response validated the robustness of two obtained MGGPmodels in prediction of suction variation characteristics under natural conditions. 展开更多
关键词 Global sensitivity analysis(GSA) Multi-gene genetic programming(mggp) Soil suction response Spatial variation of suction response Uncertainty assessment
下载PDF
基于多基因基因编程的激光光功率建模与预测
2
作者 黄振宇 全伟 《系统仿真技术》 2017年第3期262-265,270,共5页
提出一种基于多基因基因编程(MGGP)的技术对半导体激光器光功率进行建模及预测的方法。在建模过程中,训练集用于对模型进行训练,测试集用于对模型的预测效果进行评估。实验结果表明,此方法可以对激光器光功率做出准确预测,可被广泛应用... 提出一种基于多基因基因编程(MGGP)的技术对半导体激光器光功率进行建模及预测的方法。在建模过程中,训练集用于对模型进行训练,测试集用于对模型的预测效果进行评估。实验结果表明,此方法可以对激光器光功率做出准确预测,可被广泛应用于建模及预测领域。 展开更多
关键词 半导体激光器 多基因基因编程(mggp) 建模 预测
下载PDF
Multi-gene genetic programming extension of AASHTO M-E for design oflow-volume concrete pavements 被引量:1
3
作者 Haoran Li Lev Khazanovich 《Journal of Road Engineering》 2022年第3期252-266,共15页
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement... The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions. 展开更多
关键词 Mechanistic-empirical pavement design guide Low-volume roads Concrete pavement Transverse cracking Joint faulting Multi-gene genetic programming(mggp)
下载PDF
Application of Multi-Gene Genetic Programming in Kriging Interpolation
4
作者 Changik Han Ende Wang +1 位作者 Jianming Xia Sunggi Yun 《Journal of Geoscience and Environment Protection》 2015年第5期27-34,共8页
A key stage for Kriging interpolation is the estimating of variogram model, which characterizes the spatial behavior of the variables of interest. But most traditional kriging interpolation has finite types of empiric... A key stage for Kriging interpolation is the estimating of variogram model, which characterizes the spatial behavior of the variables of interest. But most traditional kriging interpolation has finite types of empirical variogram model, and sometimes, the optimal type of variogram model can not be find, which result in decreasing interpolation accuracy. In this paper, we explore the use of Multi-Gene Genetic Programming (MGGP) to automatically find an empirical variogram model that fits on an experimental variogram. Empirical variogram estimation based on MGGP, in contrast with traditional method need not select type of basic variogram model and can directly get both the functional type as well as the coefficients of the optimal variogram. The results of case study show that the proposed method can avoid the subjectivity in choosing the type of variogram models and can adaptively fit variogram according to the real data structure, which improves the interpolation accuracy of kriging significantly. 展开更多
关键词 mggp KRIGING INTERPOLATION VARIOGRAM
下载PDF
基于多基因遗传规划的矿石品位估计 被引量:2
5
作者 韩创益 王恩德 +1 位作者 夏建明 李光秀 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期408-411,420,共5页
由于矿床形成过程复杂、控制因素多,导致估计矿石品位相对困难.尽量降低矿床预测中的估计误差对矿产资源的开发和利用是至关重要的.克立格法被认为是最佳的品位估计方法,其必须满足对于品位空间分布的平稳性和内蕴假设.但实践上,大部分... 由于矿床形成过程复杂、控制因素多,导致估计矿石品位相对困难.尽量降低矿床预测中的估计误差对矿产资源的开发和利用是至关重要的.克立格法被认为是最佳的品位估计方法,其必须满足对于品位空间分布的平稳性和内蕴假设.但实践上,大部分的品位数据具有稀疏、不规则而复杂的空间分布,这有时会导致克立格法违反平稳性和内蕴假设.本文提出基于多基因遗传规划的矿石品位估计方法,并将其与克立格法进行对比.结果显示,基于多基因遗传规划的方法不需要关于空间分布的假设.这样,简化了实施矿体品位预测的条件,并能取得较好的预测结果,可应用于复杂矿体品位的预测. 展开更多
关键词 矿石品位估计 多基因遗传规划 普通克立格 矿床预测 人工智能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部