期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Formation and distribution characteristics of Proterozoic–Lower Paleozoic marine giant oil and gas fields worldwide 被引量:3
1
作者 Xiao-Ping Liu Zhi-Jun Jin +5 位作者 Guo-Ping Bai Ming Guan Jie Liu Qing-Hua Pan Ting Li Yu-Jie Xing 《Petroleum Science》 SCIE CAS CSCD 2017年第2期237-260,共24页
There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas ... There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration. 展开更多
关键词 Giant oil and gas field Proterozoic and LowerPaleozoic marine carbonate rocks Petroleum geologicalconditions oil and gas distribution
下载PDF
Determining the Main Gas-generation Phase of Marine Organic Matters in Different Occurrence States using the Kinetic Method 被引量:2
2
作者 WANG Yunpeng ZHAO Changyi +6 位作者 WANG Zhaoyun WANG Hongjun ZOU Yanrong LIU Jinzhong ZHAO Wenzhi LIU Dehan LU Jialan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第1期197-205,共9页
This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas genera... This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example. 展开更多
关键词 marine organic matter KEROGEN oil cracking hydrocarbon generating kinetics main gasgeneration phase southwestern Tarim Basin gas source kitchen
下载PDF
Exploring the potential of oil and gas resources in Sichuan Basin with Super Basin Thinking 被引量:2
3
作者 WANG Zecheng SHI Yizuo +8 位作者 WEN Long JIANG Hua JIANG Qingchun HUANG Shipeng XIE Wuren LI Rong JIN Hui ZHANG Zhijie YAN Zengmin 《Petroleum Exploration and Development》 CSCD 2022年第5期977-990,共14页
Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the... Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins. 展开更多
关键词 Super Basin Thinking marine carbonate reservoir tight sand gas shale oil total petroleum system stacked hydrocarbon accumulation Sichuan Basin
下载PDF
Technological progress and development directions of PetroChina overseas oil and gas field production
4
作者 MU Longxin CHEN Yaqiang +1 位作者 XU Anzhu WANG Ruifeng 《Petroleum Exploration and Development》 2020年第1期124-133,共10页
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol... This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly. 展开更多
关键词 OVERSEAS oil and gas FIELD PRODUCTION sandstone oilFIELD large carbonate oilFIELD unconventional oil and gas FIELD marine deep-water oil and gas technological progress development direction
下载PDF
Dynamic simulation of differential accumulation history of deep marine oil and gas in superimposed basin:A case study of Lower Paleozoic petroleum system of Tahe Oilfield,Tarim Basin,NW China
5
作者 LI Bin ZHONG Li +4 位作者 LYU Haitao YANG Suju XU Qinqi ZHANG Xin ZHENG Binsong 《Petroleum Exploration and Development》 SCIE 2024年第5期1217-1231,共15页
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p... According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin. 展开更多
关键词 superimposed basin Tarim Basin marine carbonate rock oil and gas differential accumulation dynamic accumulation simulation fluid potential technology Tahe oilfield Lower Paleozoic petroleum system simulation deep and ultra-deep strata
下载PDF
Application of wellhead suction anchor technology in the second production test of natural gas hydrates in the South China Sea 被引量:2
6
作者 Bo Li Bei-bei Kou +7 位作者 Bin Li Jing Li Jing Zeng Qing-lei Niu Yu-tao Shao Ke-wei Zhang Hao-yu Yu Ying-sheng Wang 《China Geology》 2022年第2期293-299,共7页
Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and v... Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and vertical bearing capacities and lateral bending moment.The anchor structure of a traditional suction anchor structure is improved with wellhead suction anchor technology,where a central pipe is added as a channel for drilling and completion operations.To solve the technical problems of a low wellhead bearing capacity,shallow built-up depth,and limited application of conductor jetting in the second production test of natural gas hydrates(NGHs)in the South China Sea(SCS),the China Geological Survey(CGS)took the lead in independently designing and manufacturing a wellhead suction anchor,which fulfilled the requirements of the production test.This novel anchor was successfully implemented in the second production test for the first time,providing a stable wellhead foundation for the success of the second production test of NGHs in the SCS. 展开更多
关键词 Wellhead suction anchor Conductor jetting marine NGHs Production test NGHs exploration trial engineering oil and gas exploration engineering South China Sea
下载PDF
Nuclear magnetic resonance study of the formation and dissociation process of nature gas hydrate in sandstone
7
作者 Dong-hui Xing Xu-wen Qin +5 位作者 Hai-jun Qiu Hong-feng Lu Yi-ren Fan Xin-min Ge Cheng Lu Jin-wen Du 《China Geology》 CAS 2022年第4期630-636,共7页
In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.... In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.The result shows that the intensity of T_(2) spectra and magnetic resonance imaging(MRI)signals gradually decreases in the hydrate formation process,and at the same time,the T_(2) spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate.The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity.Significantly,for the sample with lower porosity and higher argillaceous content,the intensity of the T_(2) spectra also shows a trend of a great decrease in the hydrate formation process,which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content.The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores. 展开更多
关键词 Nature gas hydrates(NGHs) Methane hydrate Nuclear magnetic resonance(NMR) Magnetic resonance imaging(MRI) Formation and dissociation Saturation Berea sandstone marine hydrates production test oil and gas exploration engineering
下载PDF
China Offshore Oil Industry and Foreign Investment
8
作者 Ru Ke(Vice Chief Geologist, China National Offshore Oil Corp) 《China Oil & Gas》 CAS 1994年第3期5-7,共3页
The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered fro... The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered from north down to south were drilled resulting in a number of discoveries with the total proven oil in place being merely 40 million tons.In fact,the China's offshore oil industry in a real sence did not emerge on the horizon until early 1980's when China opened its door to outside world and the China National Offshore Oil Corporation(CNOOC)was born. 展开更多
关键词 OFFSHORE marine exploration oil and gas FIELDS INVESTMENT FOREIGN policy Strategy
下载PDF
Formation and accumulation of oil and gas in marine carbonate sequences in Chinese sedimentary basins 被引量:16
9
作者 JIN ZhiJun 《Science China Earth Sciences》 SCIE EI CAS 2012年第3期368-385,共18页
Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sediment... Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sedimentary basins in recent years. The recently discovered giant Tahe Oil Field and Puguang Gas Field have provided geological entities for further studies of the formation and accumulation of oil and gas in marine carbonate sequences. Marine carbonate sequences in China are characterized by old age, multiple structural deformation, differential thermal evolution of source rocks, various reservoir types (i.e. reef-bank complex and paleo-weathered crust karst reservoir), uneven development of caprocks, especially gypsum seal, and multi-episodes of hydrocarbon accumulation and readjustment. As a result, the formation of hydrocarbon accumulations in the Chinese marine carbonate sequences has the following features: (i) the high-quality marine source rocks of shale and calcareous mudstone are often associated with siliceous rocks or calcareous rocks and were deposited in slope environments. They are rich in organic matter, have a higher hydrocarbon generation potential, but experienced variable thermal evolutions in different basins or different areas of the same basin. (ii) High quality reservoirs are controlled by both primary depositional environments and later modifications including diagenetic modifications, structural deformations, and fluid effects. (iii) Development of high-quality caprocks, especially gypsum seals, is the key to the formation of large-and medium-sized oil and gas fields in marine carbonate sequences. Gypsum often constitutes the caprock for most of large sized gas fields. Given that Chinese marine carbonate sequences are of old age and subject to multiple episodes of structural deformation and superposition, oil and gas tend to accumulate in the slopes and structural hinge zones, since the slopes favor the development of effective assemblage of source-reservoir-caprock, high quality source rocks, good reservoirs such as reef-bank complex, and various caprocks. As the structural hinge zones lay in the focus area of petroleum migration and experienced little structural deformation, they are also favorable places for hydrocarbon accumulation and preservation. 展开更多
关键词 marine carbonate sequences oil and gas accumulation source rock high quality reservoir CAPROCK depositional slope structural hinge zone
原文传递
Geochemical characteristics and accumulation of marine oil and gas around Halahatang depression,Tarim Basin,China 被引量:7
10
作者 LU YuHong,XIAO ZhongYao,GU QiaoYuan&ZHANG QiuCha Research Institute of Exploration and Development,Tarim Oilfield Company,PetroChina,Korla 841000,China 《Science China Earth Sciences》 SCIE EI CAS 2008年第S1期195-206,共12页
There exists a petroleum system rich of oil and gas around Halahatang depression,where the oil and gas possess obvious local distinctions of properties in different parts.The research proved that the discovered crude ... There exists a petroleum system rich of oil and gas around Halahatang depression,where the oil and gas possess obvious local distinctions of properties in different parts.The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock,and the differences of its properties were controlled by the oil and gas filling intensity.The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases:late Caledonian-Early Hercynian epoch,late Hercynian epoch,and Yanshan-Himalayan epoch. In the first phase,the oil and gas derived mostly from Cambrian source rock,which formed the primary ancient oil reservoirs,then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present.In the second phase,the O2+3 source rock of Manjia'er depression started its generation of hydrocarbon,which accumulated in the high position of Tabei uplift afterwards,and then biodegradated to heavy oil in the late Hercynian epoch.In the last phase,the O2+3 source rock of southern Halahatang depression and margin of Manjia'er depression started its peak of generating liquid hydrocarbon,which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch,and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading,to lead to obvious crude oil divergence. 展开更多
关键词 marine facies Mid-Upper ORDOVICIAN SOURCE rock oil and gas SOURCE ACCUMULATION stage Halahatang DEPRESSION TARIM Basin
原文传递
Emissions of intermediate volatility organic compound from waste cooking oil biodiesel and marine gas oil on a ship auxiliary engine 被引量:2
11
作者 Penghao Su Yuejiao Hao +7 位作者 Zhe Qian Weiwei Zhang Jing Chen Fan Zhang Fang Yin Daolun Feng Yingjun Chen Yifan Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第5期262-270,共9页
Ship auxiliary engines contribute large amounts of air pollutants when at berth.Biodiesel,including that from waste cooking oil(WCO),can favor a reduction in the emission of primary pollutant when used with internal c... Ship auxiliary engines contribute large amounts of air pollutants when at berth.Biodiesel,including that from waste cooking oil(WCO),can favor a reduction in the emission of primary pollutant when used with internal combustion engines.This study investigated the emissions of gaseous intermediate-volatile organic compounds(IVOCs)between WCO biodiesel and marine gas oil(MGO)to further understand the differences in secondary organic aerosol(SOA)production of exhausts.Results revealed that WCO exhaust exhibited similar IVOC composition and volatility distribution to MGO exhaust,despite the differences between fuel contents.While WCO biodiesel could reduce IVOC emissions by 50%as compared to MGO,and thus reduced the SOA production from IVOCs.The compositions and volatility distributions of exhaust IVOCs varied to those of their fuels,implying that fuel-component-based SOA predicting model should be used with more cautions when assessing SOA production of WCO and MGO exhausts.WCO biodiesel is a cleaner fuel comparing to conventional MGO on ship auxiliary engines with regard to the reductions in gaseous IVOC emissions and corresponding SOA productions.Although the tests were conducted on test bench,the results could be considered as representative due to the widely applications of the test engine and MGO fuel on real-world ships. 展开更多
关键词 Waste cooking oil biodiesel marine gas oil marine auxiliary engine Intermediate-volatility organic compounds Secondary organic aerosol
原文传递
远洋船舶低低硫燃油冷却系统研究
12
作者 杨兴林 金东鸽 +1 位作者 程建强 薛勇 《机电设备》 2013年第6期55-58,共4页
介绍了一种船舶低低硫燃油冷却系统,分析了系统原理和结构组成。最后制作了样机,进行模拟验证,绘制了燃油进出口的温度变化曲线。
关键词 船舶 低低硫燃油 冷却系统
下载PDF
“Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin 被引量:11
13
作者 Caineng ZOU Zhi YANG +6 位作者 Shasha SUN Qun ZHAO Wenhua BAI Honglin LIU Songqi PAN Songtao WU Yilin YUAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第7期934-953,共20页
The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum ... The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum inside source kitchen"with respect to onshore shale oil and gas in China.This paper analyzes the characteristics of shale oil and gas resources in the United States and China,and points out that maturity plays an important role in controlling shale oil and gas composition.US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas,whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy.A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects.First,there are multiple sets of organic-rich shale reservoirs of three types in the basin,such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale,Permian Longtan Formation transitional shale,Triassic Xujiahe Formation lake-swamp shale,and Jurassic lacustrine shale.Marine shale gas enrichment is mainly controlled by four elements:Deep-water shelf facies,moderate thermal evolution,calcium-rich and silicon-rich rock association,and closed roof/floor.Second,the"sweet section"is generally characterized by high total organic carbon,high gas content,large porosity,high brittle minerals content,high formation pressure,and the presence of lamellation/bedding and natural microfractures.Moreover,the"sweet area"is generally characterized by very thick organic-rich shale,moderate thermal evolution,good preservation conditions,and shallow burial depth,which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation,Longtan Formation,and Daanzhai Member of the Ziliujing Formation.Third,the marine,transitional,and continental shale oil and gas resources in the Sichuan Basin account for 50%,25%,and 30%of the respective types of shale oil and gas geological resources in China,with great potential to become the cradle of the shale oil and gas industrial revolution in China.Following the"Conventional Daqing-Oil"(i.e.,the Daqing oilfield in the Songliao Basin)and the"Western Daqing-Oil&Gas"(i.e.,the Changqing oilfield in the Ordos Basin),the Southwest oil and gas field in the Sichuan Basin is expected to be built into a"Sichuan-Chongqing Daqing-Gas"in China. 展开更多
关键词 Shale oil Shale gas marine facies Continental facies Transitional facies Resource potential Sweet area Sweet section Source rock oil and gas Shale oil and gas revolution "Sichuan-Chongqing Daqing-gas"
原文传递
Petroleum Exploration of Craton Basins in China 被引量:6
14
作者 ZHANG Kang WANG Junling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第1期117-126,共10页
Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken.... Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up. 展开更多
关键词 craton basin oil and gas exploration multiphase hydrocarbon generation multiphase accumulation reworking of oil-gas pools marine oil and gas
下载PDF
Stable carbon isotopes of gaseous alkanes as genetic indicators inferred from laboratory pyrolysis experiments of various marine hydrocarbon source materials from southern China 被引量:6
15
作者 LIU WenHui WANG Jie, Tengert QIN JianZhong ZHENG LunJu 《Science China Earth Sciences》 SCIE EI CAS 2012年第6期966-974,共9页
Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas ge... Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas generation and derive geo- chemical indicators of gas genesis under approximate pressure and temperature. The results indicate that gas generation productivity of different marine material decreased in the ganic matter (solid bitumen and heavy oil), and kerogen. order of crude oil (light oil and condensate), dispersed soluble or- Under identical temperature-pressure regimes, pyrolysates derived from kerogen and dispersed soluble organic matter display drastically different geochemical characteristics. For example, the δ13Cc02-δ13C1 values of gaseous products from dispersed soluble organic matter are greater than 20%o, whereas those from kerogen are less than 20%~. The 813C1 values of pyrolysates from different marine hydrocarbon sources generally increase with pyrolysis temperature, but are always lower than those of the source precursors. The δ13C values of ethane and propane in the pyrolysates also increase with increasing pyrolysis temperature, eventually approaching that of their sources, at peak hydro- carbon generation. At high-over mature stages, the δ13C values of ethane and propane are often greater than those of their sources but close to those of coal gases, and thus become ineffective as gas genetic indicators. Ln(CffC3) can clearly distin- guish kerogen degradation gas from oil cracking gas and Ln(CJC2)-(δ13C1-δ13C2) can be an effective indicator for distinguishing oil cracking gas from dispersed soluble organic matter cracking gas. 展开更多
关键词 marine strata in southern China different hydrocarbon source hydrous pyrolysis simulation gas isotopes oil cracking gas
原文传递
Cenozoic Sea-land Transition and its Petroleum Geological Significance in the Northern South China Sea 被引量:4
16
作者 ZHAO Zhigang ZHANG Hao +2 位作者 CUI Yuchi TANG Wu QIAO Peijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期41-54,共14页
The process of Cenozoic sea-land changes in the northern South China Sea(SCS)controlled the sedimentary filling pattern and played an important role in the petroleum geological characteristics of the northern marginal... The process of Cenozoic sea-land changes in the northern South China Sea(SCS)controlled the sedimentary filling pattern and played an important role in the petroleum geological characteristics of the northern marginal sedimentary basins.Under the control of the opening process of the SCS,the northern SCS Cenozoic transgression generally showed the characteristics of early in the east and late in the west,and early in the south and late in the north.The initial transgression occurred in the Eocene in the Taixinan Basin(TXNB)of the eastern SCS,while the transgression occurred until the Pliocene in the Yinggehai Basin(YGHB)of the western SCS.International Ocean Discovery Program(IODP)expeditions(Expeditions 367/368)revealed that the initial transgression of the SCS basin occurred at approximately 34 Ma,which was the initial opening time of the SCS.The period of drastic changes in the sedimentary environment caused by large-scale transgression corresponded to the opening time of the southwestern subbasin(approximately 23 Ma),which also represented the peak of the spreading of the SCS.The sea-land transition process controls the distribution of alternating continent-marine facies,marine facies source rocks and reservoirs in the basins.The marine facies source rocks of the basins in the northern SCS have a trend of gradually becoming younger from east to west,which is consistent with the regional process of gradual transgression from east to west.Regional sea-level changes were comprehensively influenced by SCS opening and global sea-level changes.These processes led to the early development in the east and south and late development in the west and north for the carbonate platform in the SCS.Carbonate platforms form another type of"selfgenerating and self-accumulating"oil-gas reservoir in the northern SCS.The sea-land transition controlled the depositional filling patterns of different basins and laid the foundation of marine deposits for oil and gas resources.The source-reservoircap assemblage in the northern SCS was controlled horizontally by provenance supply and sedimentary environmental changes caused by sea-land transition and vertically by the tectonic evolution of the SCS and regional sea-level changes. 展开更多
关键词 marine stratum sea-level changes sea-land transition oil and gas resources northern South China Sea
下载PDF
All-Electric Subsea Control Systems and the Effects on Subsea Manifold Valves 被引量:1
17
作者 Karan Sotoodeh 《Journal of Marine Science and Application》 CSCD 2020年第3期465-472,共8页
Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of ... Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of all-electric subsea technology instead of hydraulic technology is growing and will be the future of subsea systems due to the former’s environmental and functional advantages and reduced costs.The benefits of all-electric subsea systems are health,safety,and environment(HSE)and improved reliability,flexibility,and functionality compared with traditional hydraulic-electrical systems.Existing electrohydraulic technology for a typical subsea system,hydraulic and electric actuators,and subsea manifold valves including valve types and selection philosophy have been reviewed in this paper.Some major worldwide oil companies such as Equinor and Schlumberger have successful experiences with subsea electric actuators.Considering the benefits of all-electric technology especially in terms of cost and HSE,as well as successful experiences of two major oil companies,further research in this area is warranted.One of the gaps in existing reviewed literature is the effect of using all-electric actuators for manifold valves.Thus,three main questions related to electric actuator selection,requirement of safety integrity level(SIL),and effect of using electric actuators on manifold valve selection have been addressed and answered.Forty hydraulic actuated manifold valves from nine past subsea projects in different parts of the world,mainly Africa and Australia,have been selected for the analysis of all-electric actuators.Results show that 93%of the valves require spring-return electric actuators,whereas 7%can be operated with conventional electric actuators without any spring.The manifold valves do not require SIL certification because they are not connected to an emergency shut down system.Introducing the electric actuators to the manifold valve will not change the valve selection philosophy. 展开更多
关键词 Subsea oil and gas Production MANIFOLD Industrial valves Electric actuators oil and gas OFFSHORE marine environment
下载PDF
Petroleum geology of marl in Triassic Leikoupo Formation and discovery significance of Well Chongtan1 in central Sichuan Basin,SW China 被引量:1
18
作者 WANG Zecheng XIN Yongguang +11 位作者 XIE Wuren WEN Long ZHANG Hao XIE Zengye ZHANG Jianyong TIAN Han LI Wenzheng FU Xiaodong SUN Haofei WANG Xiaofang HU Guoyi ZHANG Yu 《Petroleum Exploration and Development》 SCIE 2023年第5期1092-1104,共13页
In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of... In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of Middle Triassic,recording a significant discovery.However,the hydrocarbon accumulation in marl remains unclear,which restricts the selection and deployment of exploration area.Focusing on Well CT1,the hydrocarbon accumulation characteristics of Lei-32 marl are analyzed to clarify the potential zones for exploration.The following findings are obtained.First,according to the geochemical analysis of petroleum and source rocks,oil and gas in the Lei-32 marl of Well CT1 are originated from the same marl.The marl acts as both source rock and reservoir rock.Second,the Lei-32 marl in central Sichuan Basin is of lagoonal facies,with a thickness of 40–130 m,an area of about 40000 km^(2),a hydrocarbon generation intensity of(4–12)×10^(8) m^(3)/km^(2),and an estimated quantity of generated hydrocarbons of 25×10^(12) m^(3).Third,the lagoonal marl reservoirs are widely distributed in central Sichuan Basin.Typically,in Xichong–Yilong,Ziyang–Jianyang and Moxi South,the reservoirs are 20–60 m thick and cover an area of 7500 km^(2).Fourth,hydrocarbons in the lagoonal marl are generated and stored in the Lei-32 marl,which means that marl serves as both source rock and reservoir rock.They represent a new type of unconventional resource,which is worthy of exploring.Fifth,based on the interpretation of 2D and 3D seismic data from central Sichuan Basin,Xichong and Suining are defined as favorable prospects with estimated resources of(2000–3000)×10^(8) m^(3). 展开更多
关键词 Sichuan Basin central Sichuan Basin Triassic Leikoupo Formation lagoonal marl source-reservoir integration marine unconventional oil and gas
下载PDF
Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin,northern South China Sea:Insights from borehole apatite fission-track thermochronology 被引量:1
19
作者 Xiao-yin Tang Shu-chun Yang Sheng-biao Hu 《China Geology》 CAS CSCD 2023年第3期429-442,共14页
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti... The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity. 展开更多
关键词 oil and gas Hydrocarbon potential Apatite fission-track Tectonic-thermal evolution Thermal history modeling Cooling event Heating event marine geological survey engineering Erosion amount and rate oil-gas exploration engineering Pearl River Mouth Basin The South China Sea
下载PDF
A Case Study for a Digital Seabed Database: Bohai Sea Engineering Geology Database
20
作者 SU Tianyun ZHAI Shikui +3 位作者 LIU Baohua LIANG Ruicai ZHENG Yanpeng WANG Yong 《Journal of Ocean University of China》 SCIE CAS 2006年第3期283-287,共5页
This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysi... This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System. 展开更多
关键词 the Bohai Sea marine engineering geology oil and gas exploration ORACLE UML OBJECT-ORIENTED
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部