期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
胎盘超声图像分割
1
作者 徐成 张芸 曾祥进 《计算机与现代化》 2024年第5期115-119,126,共6页
妊娠早期的胎盘形状和大小与胎儿生长等临床结果紧密相关。针对人工手动标注胎盘轮廓较为耗时的分割方法,设计一种新型深度学习分割网络:DEC-U-Net,该模型设计依据U-Net架构,在U-Net下采样阶段使用深度超参数化卷积代替2D卷积并且联合EC... 妊娠早期的胎盘形状和大小与胎儿生长等临床结果紧密相关。针对人工手动标注胎盘轮廓较为耗时的分割方法,设计一种新型深度学习分割网络:DEC-U-Net,该模型设计依据U-Net架构,在U-Net下采样阶段使用深度超参数化卷积代替2D卷积并且联合ECA(Efficient Channel Attention)注意力机制,在不过多引入参数量的同时提高对胎盘细节特征识别的准确度。将交叉注意力机制引入跳跃链接,解决胎盘边界模糊、对比度不均等问题。与普通U-Net网络相比,本文算法分别在交并比(IoU)、召回率(Recall)、精确度(Precision)、Dice系数上提升4.14、9.59、6.2、16.41个百分点。实验结果表明,改进后的网络模型具有较好的分割效果,能够将超声图像中的胎盘进行精确分割。 展开更多
关键词 胎儿超声图像 胎盘检测 Do-Conv ECA注意力 mhca
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部