为进一步提高沥青路面的路用性能,提出将多孔中空二氧化硅纳米颗粒(MHSN)作为沥青烟的吸附剂,掺入沥青混合料中,测定改性沥青的路用性能。通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron...为进一步提高沥青路面的路用性能,提出将多孔中空二氧化硅纳米颗粒(MHSN)作为沥青烟的吸附剂,掺入沥青混合料中,测定改性沥青的路用性能。通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)和BET(Brunauer-Emmett-Teller)等测试手段对水热法制备的纳米MHSN进行表征,并测定MHSN改性沥青的流变性能和VOC的排放量。结果表明:MHSN表面的孔径大部分连续分布在0~50 nm;MHSN的掺入降低了沥青的针入度和提高了软化点,提高了沥青的复合剪切模量,使沥青的相位角略有减小,可以提高沥青混合料的高温抗车辙性能;MHSN的掺入可以显著降低沥青VOC的总排放量,对沥青VOC中各组分的排放有不同程度的抑制作用。由此可见,纳米MHSN掺量的沥青混合料路用性能表现优越,可用于道路施工中,并且经济效益和社会效益明显。展开更多
Healthcare centers always aim to deliver the best quality healthcare services to patients and earn their satisfaction. Technology has played a major role in achieving these goals, such as clinical decision-support sys...Healthcare centers always aim to deliver the best quality healthcare services to patients and earn their satisfaction. Technology has played a major role in achieving these goals, such as clinical decision-support systems and mobile health social networks. These systems have improved the quality of care services by speeding-up the diagnosis process with accuracy, and allowing caregivers to monitor patients remotely through the use of WBS, respectively. However, these systems’ accuracy and efficiency are dependent on patients’ health information, which must be inevitably shared over the network, thus exposing them to cyber-attacks. Therefore, privacy-preserving services are ought to be employed to protect patients’ privacy. In this work, we proposed a privacy-preserving healthcare system, which is composed of two subsystems. The first is a privacy-preserving clinical decision-support system. The second subsystem is a privacy-preserving Mobile Health Social Network (MHSN). The former was based on decision tree classifier that is used to diagnose patients with new symptoms without disclosing patients’ records. Whereas the latter would allow physicians to monitor patients’ current condition remotely through WBS;thus sending help immediately in case of a distress situation detected. The social network, which connects patients of similar symptoms together, would also provide the service of seeking help of near-by passing people while the patient is waiting for an ambulance to arrive. Our model is expected to improve healthcare services while protecting patients’ privacy.展开更多
文摘为进一步提高沥青路面的路用性能,提出将多孔中空二氧化硅纳米颗粒(MHSN)作为沥青烟的吸附剂,掺入沥青混合料中,测定改性沥青的路用性能。通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)和BET(Brunauer-Emmett-Teller)等测试手段对水热法制备的纳米MHSN进行表征,并测定MHSN改性沥青的流变性能和VOC的排放量。结果表明:MHSN表面的孔径大部分连续分布在0~50 nm;MHSN的掺入降低了沥青的针入度和提高了软化点,提高了沥青的复合剪切模量,使沥青的相位角略有减小,可以提高沥青混合料的高温抗车辙性能;MHSN的掺入可以显著降低沥青VOC的总排放量,对沥青VOC中各组分的排放有不同程度的抑制作用。由此可见,纳米MHSN掺量的沥青混合料路用性能表现优越,可用于道路施工中,并且经济效益和社会效益明显。
文摘Healthcare centers always aim to deliver the best quality healthcare services to patients and earn their satisfaction. Technology has played a major role in achieving these goals, such as clinical decision-support systems and mobile health social networks. These systems have improved the quality of care services by speeding-up the diagnosis process with accuracy, and allowing caregivers to monitor patients remotely through the use of WBS, respectively. However, these systems’ accuracy and efficiency are dependent on patients’ health information, which must be inevitably shared over the network, thus exposing them to cyber-attacks. Therefore, privacy-preserving services are ought to be employed to protect patients’ privacy. In this work, we proposed a privacy-preserving healthcare system, which is composed of two subsystems. The first is a privacy-preserving clinical decision-support system. The second subsystem is a privacy-preserving Mobile Health Social Network (MHSN). The former was based on decision tree classifier that is used to diagnose patients with new symptoms without disclosing patients’ records. Whereas the latter would allow physicians to monitor patients’ current condition remotely through WBS;thus sending help immediately in case of a distress situation detected. The social network, which connects patients of similar symptoms together, would also provide the service of seeking help of near-by passing people while the patient is waiting for an ambulance to arrive. Our model is expected to improve healthcare services while protecting patients’ privacy.