Metal⁃organic framework(MOF)MIL⁃101 and surface plasmon polariton(SPP)supported gold nanoparti⁃cles(Au NPs)hybrid systems were developed as a highly sensitive and reproducible surface⁃enhanced Raman scat⁃tering(SERS)d...Metal⁃organic framework(MOF)MIL⁃101 and surface plasmon polariton(SPP)supported gold nanoparti⁃cles(Au NPs)hybrid systems were developed as a highly sensitive and reproducible surface⁃enhanced Raman scat⁃tering(SERS)detection platform,in which a green electrostatic self⁃assembly technology was adopted to construct the substrate.In an aqueous solution,the electronegativity of the particles can be used to prepare the composite sub⁃strate without any surface modifier.Due to the enrichment capacity of MIL⁃101 and the electromagnetic enhance⁃ment from Au NPs,the well⁃designed MIL⁃101/Au composites possessed ultrahigh sensitivity with the detection limit of Rhodamine 6G(R6G)as low as 10^(-10) mol·L^(-1).Meanwhile,the substrate exhibits high stability,excellent reproduc⁃ibility,and recyclability.Additionally,the novel substrate can be explored for direct capture,and sensitively detect pesticide residues such as thiram.展开更多
文摘Metal⁃organic framework(MOF)MIL⁃101 and surface plasmon polariton(SPP)supported gold nanoparti⁃cles(Au NPs)hybrid systems were developed as a highly sensitive and reproducible surface⁃enhanced Raman scat⁃tering(SERS)detection platform,in which a green electrostatic self⁃assembly technology was adopted to construct the substrate.In an aqueous solution,the electronegativity of the particles can be used to prepare the composite sub⁃strate without any surface modifier.Due to the enrichment capacity of MIL⁃101 and the electromagnetic enhance⁃ment from Au NPs,the well⁃designed MIL⁃101/Au composites possessed ultrahigh sensitivity with the detection limit of Rhodamine 6G(R6G)as low as 10^(-10) mol·L^(-1).Meanwhile,the substrate exhibits high stability,excellent reproduc⁃ibility,and recyclability.Additionally,the novel substrate can be explored for direct capture,and sensitively detect pesticide residues such as thiram.