Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-hepta...Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.展开更多
MIL-101(Cr)is a promising moisture absorbent for solar-driven water harvesting from moisture to tackle the worldwide water shortage issue.However,the MIL-101(Cr)powder suffers from a long ab/desorption cycle due to th...MIL-101(Cr)is a promising moisture absorbent for solar-driven water harvesting from moisture to tackle the worldwide water shortage issue.However,the MIL-101(Cr)powder suffers from a long ab/desorption cycle due to the crystal aggregation caused by its inherent powder properties.Here,we demonstrate a MIL-101(Cr)nanofibrous composite membrane with a nanofibrous matrix where MIL-101(Cr)is monodisperse in the 3D porous nanofibrous matrix through a simple spray-electrospinning strategy.The continuous porous nanofibrous matrix not only offers sufficient sites for MIL-101(Cr)loading but also provides rapid moisture transport channels,resulting in a super-rapid ab/desorption duration of 50 min(including an absorption process for 40 min and a desorption process for 10 min)and multicycle daily water production of 15.9 L kg^(−1) d^(−1).Besides,the MIL-101(Cr)nanofibrous composite membrane establishes a high solar absorption of 92.8%,and excellent photothermal conversion with the surface temperature of 70.7°C under one-sun irradiation.In addition,the MIL-101(Cr)nanofibrous composite membrane shows excellent potential for practical application due to its flexibility,portability,and use stability.This work provides a new perspective of shortening MOF ab/desorption duration by introducing a porous nanofibrous matrix to improve the specific water production for the solar-driven ab/desorption water harvesting technique.展开更多
基金National Natural Science Foundation of China(Grant No.22272129).
文摘Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.
基金This work was partly supported by the Funda-mental Research Funds for the Central Universi-ties (2232020D-15,2232020A-08,2232020G-01,2232020D-14,and 2232019D3-11)grants (51773037,51973027,51803023,52003044,and 61771123)from the National Natural Science Foundation of China+3 种基金This work has also been supported by the Chang Jiang Scholars Program and the Innovation Program of Shanghai Munici-pal Education Commission (2019-01-07-00-03-E00023)to Prof.Xiaohong Qinthe Shanghai Sailing Program (19YF1400700)the Opening Project of State Key Laboratory of High-Performance Ceramics and Superfine Microstruc-ture (SKL201906SIC)Young Elite Scientists Sponsorship Program by CAST and DHU Distin-guished Young Professor Program to Prof.Liming Wang.
文摘MIL-101(Cr)is a promising moisture absorbent for solar-driven water harvesting from moisture to tackle the worldwide water shortage issue.However,the MIL-101(Cr)powder suffers from a long ab/desorption cycle due to the crystal aggregation caused by its inherent powder properties.Here,we demonstrate a MIL-101(Cr)nanofibrous composite membrane with a nanofibrous matrix where MIL-101(Cr)is monodisperse in the 3D porous nanofibrous matrix through a simple spray-electrospinning strategy.The continuous porous nanofibrous matrix not only offers sufficient sites for MIL-101(Cr)loading but also provides rapid moisture transport channels,resulting in a super-rapid ab/desorption duration of 50 min(including an absorption process for 40 min and a desorption process for 10 min)and multicycle daily water production of 15.9 L kg^(−1) d^(−1).Besides,the MIL-101(Cr)nanofibrous composite membrane establishes a high solar absorption of 92.8%,and excellent photothermal conversion with the surface temperature of 70.7°C under one-sun irradiation.In addition,the MIL-101(Cr)nanofibrous composite membrane shows excellent potential for practical application due to its flexibility,portability,and use stability.This work provides a new perspective of shortening MOF ab/desorption duration by introducing a porous nanofibrous matrix to improve the specific water production for the solar-driven ab/desorption water harvesting technique.