The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy...The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.展开更多
The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball millin...The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate.展开更多
Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperatur...Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperature in cutting area to enhance tool life, it is the largest source of environmental pollution. To develop a technology for the clean and efficient milling Ti alloys, nitrogen gas is used as a cutting media in this paper. Based on lots of experiments and researches, the tool life and wear mechanism of high speed steel miller is analyzed. A conclusion is drawn that, milling with nitrogen gas media yields much longer tool life than dry milling. Tool life equations (Taylor′s equations) are derived for both milling types.展开更多
Flaxseed has displayed the potential beneficial as functional foods.However,most studies focused on effects of flaxseed extracts or ingredients in flaxseed.Besides,few studies showed that flaxseed extracts contributed...Flaxseed has displayed the potential beneficial as functional foods.However,most studies focused on effects of flaxseed extracts or ingredients in flaxseed.Besides,few studies showed that flaxseed extracts contributed to anti-type 1 diabetes(T1D),yet the underlying mechanism is still unknown.In the present study,16.7% of milled flaxseed(MF)-added diet was given to diabetic mice induced by streptozocin for 6 weeks.The results showed that MF feeding 1)slightly decreased blood glucose levels and improved the ability of glucose tolerance by oral glucose tolerance test,2)decreased liver tumor necrosis factor-αlevels and increased liver glycogen levels with significance via down-regulating TLR4/NF-κB pathways,3)and significantly altered some beneficial bacteria in gut microbiota.In conclusion,the present study showed that milled flaxseed showed the potential on anti-T1D through anti-inflammation via TLR4/NF-κB and altering the gut microbiota in STZ-induced diabetic mice.展开更多
The structure of milled wood lignin(MWL), isolated via the Bjrkman procedure, was studied by means of 1H NMR spectroscopy and Fourier transform infrared spectroscopy, and then its pyrolytic product distribution was ...The structure of milled wood lignin(MWL), isolated via the Bjrkman procedure, was studied by means of 1H NMR spectroscopy and Fourier transform infrared spectroscopy, and then its pyrolytic product distribution was investigated on a pyrolysis device. MWL obtained from Manchurian Ash(MA) contained more methoxyl and free phenolic hydroxyl groups per C9 unit than MWL from Mongolian Pine(MP) due to the existence of both guaiacyl and syringyl units, which have a major influence on the pyrolysis behavior of lignin. The results of pyrolysis show that MWL from MA generated a higher yield of bio-oil, mainly composed of phenols, guaiacols, syringols and catechols, and a less yield of char, in addition to the gaseous products CO, CO2, methane and methanol, compared with MWL from MP. Guaiacol and syringol were the typical products from G-lignin and S-lignin, probably attributed to the easier cleavage of the aryl-alkyl linkage in the side chain compared with the C―OCH3 bond in the benzene ring. The degradation of MWL from MP was dominated by the demethylation reaction and the cleavage of aliphatic ―CH2OH at the γ-position, followed by the cracking of the Cα―Cβ and C4―Cα bonds.展开更多
Transmission spectra of triangular lattice photonic crystals milled in the top surface of an annealed proton- exchange waveguide are numerically simulated. The effects of the finite depth, conical shape, trapezoidal s...Transmission spectra of triangular lattice photonic crystals milled in the top surface of an annealed proton- exchange waveguide are numerically simulated. The effects of the finite depth, conical shape, trapezoidal shape and hybrid shape of holes are theoretically analyzed. Due to the difficulty of milling high aspect-ratio cylindrical holes in lithium niobate (LiNbO3 ), a compromised solution is proposed to improve the overlap between shallow holes and the waveguide mode, and useful transmission spectra with strong contrast and sharp band edges are achieved.展开更多
<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement con...<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement concept with dense layers of Z-axis oriented milled carbon fiber Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> prepregs, are presented. Impulse-frequency response vibration technique is used for non-destructive evaluation of the dynamic flexural modulus (stiffness) and loss factor (intrinsic damping) of woven carbon/epoxy control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates. Low-velocity punch-shear tests were performed on control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates according to ASTM D3763 Standard using a drop-weight impact test system. Control panels had all layers of 3K plain woven carbon/epoxy prepregs, with a dense interlaminar reinforcement of milled carbon fibers in Z-</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">direction used in designing the Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminate—both having same areal density. Impulse-frequency response vibration experiments show that with a 50% replacement of woven carbon fabric in control panel with milled carbon fibers in Z direction dynamic flexural modulus reduced 25%</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30% (loss in stiffness) and damping increased by about the same 25%</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30%. Low-velocity punch-shear tests demonstrated about</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">25% reduction in energy absorption for Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates with the replacement of 50% woven carbon fabric in control panel.</span></span>展开更多
The influence of spark plasma sintering(SPS)temperature on microstructure,hardness and corrosion behavior of a high-energy ball milled Mg-10wt%Al alloy was investigated in this work.The holding time and sintering pres...The influence of spark plasma sintering(SPS)temperature on microstructure,hardness and corrosion behavior of a high-energy ball milled Mg-10wt%Al alloy was investigated in this work.The holding time and sintering pressure for SPS were kept constant while varying the sintering temperature from 200 to 350℃.The grain size and microstructure were studied using X-ray diffraction analysis,scanning electron microscopy,energy dispersive X-ray spectroscopy,and Archimedes'based density measurement.Corrosion behavior was investigated using potentiodynamic polarization tests.The nanocrystalline regime(grain size<100nm)was maintained even after SPS up to 350℃.The density of the alloy increased with increasing the SPS temperature.Vickers'hardness and corrosion performance improved up to 300℃ followed by a decrease after SPS at 350℃.Possible reasons for densification,strengthening,and corrosion behavior have been discussed in the light of reduced porosity and microstructural changes.展开更多
The Ti6Al4V parts produced by the existing selective laser melting(SLM)are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and perf...The Ti6Al4V parts produced by the existing selective laser melting(SLM)are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and performances of the parts.In this regard,ultrasonically-assisted machining(UAM)technique is commonly introduced to improve the machining quality due to its merits in increasing tool life and reducing cutting force.However,most of the previous studies focus on the performance of UAM with ultrasonic vibrations applied in the tangential and feed directions,whereas few of them on the impact of ultrasonic vibration along the vertical direction.In this study,the effects of feed rate on surface integrity in ultrasonically-assisted vertical milling(UAVM)of the Ti6Al4V alloy manufactured by SLM were systemically investigated compared with the conventional machining(CM)method.The results revealed that the milling forces in UAVM showed a lower amplitude than that in CM due to the intermittent cutting style.The surface roughness values of the parts produced by UAVM were generally greater than that by CM owing to the extra sinusoidal vibration textures induced by the milling cutter.Moreover,the extra vertical ultrasonic vibration in UAVM was beneficial to suppressing machining chatter.As feed rate increased,surface microhardness and thickness of the plastic deformation zone in CM raised due to more intensive plastic deformation,while these two material properties in UAVM were reduced owing to the mitigated impact effect by the high-frequency vibration of the milling cutter.Therefore,the improved surface microhardness and reduced thickness of the subsurface deformation layer in UAVM were ascribed to the vertical high-frequency impact of the milling cutter in UAVM.In general,the results of this study provided an in-depth understanding in UAVM of Ti6Al4V parts manufactured by SLM.展开更多
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-sp...The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.展开更多
To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these allo...To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy.展开更多
Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector oper...Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.展开更多
Mg-25 wt% Mg2Ni composite was prepared by sintered method, hydrided at 613 K and then ball-milled with 1.5 wt% PdC12 additive for 51 h. The effects of PdCl2 on the hydriding and dehydriding behavior of Mg-25 wt% Mg2Ni...Mg-25 wt% Mg2Ni composite was prepared by sintered method, hydrided at 613 K and then ball-milled with 1.5 wt% PdC12 additive for 51 h. The effects of PdCl2 on the hydriding and dehydriding behavior of Mg-25 wt% Mg2Ni composite were investigated. The absorption and desorption rate of the composite with PdCl2 is fast and the hydrogen storage capacity is more than that of the composite without PdCl2. The maximum hydrogen storage capacity reached 3.48 wt% at 373 K, and 5.05 wt% H at 453 K, respectively. The improvement of sorption and desorption kinetics is attributed to the catalytic effect of PdCl2, and the grain refining and lattice strain introduced by ball milling.展开更多
A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first ...A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability.展开更多
In order to improve the utilization of milling materials,save stone resources and reduce milling energy consumption,the aged Styrene-butadiene-styrene(SBS)modified asphalt was used as a binder to prepare AC-16 asphal...In order to improve the utilization of milling materials,save stone resources and reduce milling energy consumption,the aged Styrene-butadiene-styrene(SBS)modified asphalt was used as a binder to prepare AC-16 asphalt mixture to simulate old asphalt pavement materials.First,the test and discrete element simulation results of uniaxial compression tests were used to calibrate the parameters of the parallel bonding contact model between asphalt mortar and aggregates.On this basis,a microscopic model of the asphalt mixture was established to simulate the old asphalt pavement.Then,the discrete element software PFC(Particle Flow Code)was used to simulate the milling process of the old asphalt pavement.Analyzed the force of the cutting tool and the utilization rate of milling materials,and the optimal milling speed and milling depth were determined.Finally,the energy consumption in the milling process was measured.It is concluded that in the process of milling the old asphalt pavement,using a cutting angle of 42°,milling speed of 0.5 m/s and milling depth of 20 mm can reduce the wear of the cutting tool.In this case,the direct utilization rate of milling materials is 85.3%,and the rate of energy consumption reduction is 33.53%.After parameter optimization,the utilization rate of milling materials can be increased by 17.4%.展开更多
The nanostractures of the ball milled FeCo particles were characterized as functions of the ball milling time ( t ) using quantitative X- ray diffraction ( XRD ), high resolution transmission electron microscopy ...The nanostractures of the ball milled FeCo particles were characterized as functions of the ball milling time ( t ) using quantitative X- ray diffraction ( XRD ), high resolution transmission electron microscopy (HRTEM) analysis techniques. The results show that the nanocrystalliue bcc FeCo particles are available using carbonyl iron and cobalt powders as the start materials during the high-energy ball milling. At the early stage of ball milling, Co powders are easily mashed into nanocrystalllites, by which the surface of the larger Fe particles of about 80- 150 nm is coated. With t increasing, the refinement of grain size and the incorporation of defects including dislocations, disclinations and grain boundaries happen, and then FeCo alloy with a certain layered structure is formed, finally the layered stractare disappears with the formation of isotropic grains having a steadystate grain size in the nanometer regime after a certain period of t.展开更多
Mg2Ni0.8Cr0.2-x wt.% CoO/Al2O3 (x=0.5, 1, 2 and 3) composites were prepared by mechanically milling sintered Mg2Ni0.8Cr0.2 alloy and CoO/Al2O3 compound for 45 h. The addition of CoO/Al2O3 compound resulted in the good...Mg2Ni0.8Cr0.2-x wt.% CoO/Al2O3 (x=0.5, 1, 2 and 3) composites were prepared by mechanically milling sintered Mg2Ni0.8Cr0.2 alloy and CoO/Al2O3 compound for 45 h. The addition of CoO/Al2O3 compound resulted in the good kinetics properties of hydriding/dehydriding reaction of the composites. The composite with 1.0 wt.% CoO/Al2O3 catalyst could reach the maximum hydrogen absorption capacity (2.9 wt.%) within 5 min at 393 K under H2 pressure of 4 MPa, and can desorb rapidly at 493 K. The decomposition and synthesis of hydrogen molecule on Mg2Ni0.8Cr0.2 alloy surface was promoted by addition of CoO/Al2O3 catalyst. In addition, the formation of metallic Ni particles, strain and defects during the ball milling process also resulted in the improved hydrogenation performance of Mg2Ni-based alloys.展开更多
In this investigation,mechanical grinding was applied to fabricating the Mg-based alloys La_(7)Sm_(3)Mg_(80)Ni_(10)+5 wt.%M(M=None,TiO_(2),La_(2)O_(3))(named La_(7)Sm_(3)Mg_(80)Ni_(10)-5 M(M=None,TiO_(2),La_(2)O_(3)))...In this investigation,mechanical grinding was applied to fabricating the Mg-based alloys La_(7)Sm_(3)Mg_(80)Ni_(10)+5 wt.%M(M=None,TiO_(2),La_(2)O_(3))(named La_(7)Sm_(3)Mg_(80)Ni_(10)-5 M(M=None,TiO_(2),La_(2)O_(3))).The result reveals that the structures of as-milled alloys consist of amorphous and nanocrystalline.The particle sizes of the added M(M=TiO_(2),La_(2)O_(3))alloys obviously diminish in comparison with the M=None specimen,suggesting that the catalysts TiO_(2)and La_(2)O_(3)can enhance the grinding efficiency.What’s more,the additives TiO_(2)and La_(2)O_(3)observably improve the activation performance and reaction kinetics of the composite.The time required by releasing 3 wt.%hydrogen at553,573 and 593 K is 988,553 and 419 s for the M=None sample,and 578,352 and 286 s for the M=TiO_(2)composite,and 594,366,301 s for the La_(2)O_(3)containing alloy,respectively.The absolute value of hydrogenation enthalpy change|△H|of the M(M=None,TiO_(2),La_(2)O_(3))alloys is 77.13,74.28 and 75.28 kJ/mol.Furthermore,the addition of catalysts reduces the hydrogen desorption activation energy(E_(a)^(de)).展开更多
基金the financial support provided by the Natural Science Foundations in Hebei Province(No.E2018201235)Baoding Science and Technology Planning Project(No.2074P019)+2 种基金Higher Education in Hebei Province School Science and Technology Research Project(No.QN2019209)Horizontal project(horizontal 20230048)2022 Hebei Province and Hebei University College Students Innovation and Entrepreneurship Training Program(Nos.2022265 and 2022266)。
文摘The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.
文摘The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate.
文摘Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperature in cutting area to enhance tool life, it is the largest source of environmental pollution. To develop a technology for the clean and efficient milling Ti alloys, nitrogen gas is used as a cutting media in this paper. Based on lots of experiments and researches, the tool life and wear mechanism of high speed steel miller is analyzed. A conclusion is drawn that, milling with nitrogen gas media yields much longer tool life than dry milling. Tool life equations (Taylor′s equations) are derived for both milling types.
基金the support from National Key Research and Development Program of China(NO.2016YFD400604-02)the National Natural Science Foundation of China(NO.82003457)+1 种基金Jiangsu Province Science Foundation for Youths(NO.BK20200366)the Fundamental Research Funds for the Central Universities and“Zhishan”Scholars Programs of Southeast University.
文摘Flaxseed has displayed the potential beneficial as functional foods.However,most studies focused on effects of flaxseed extracts or ingredients in flaxseed.Besides,few studies showed that flaxseed extracts contributed to anti-type 1 diabetes(T1D),yet the underlying mechanism is still unknown.In the present study,16.7% of milled flaxseed(MF)-added diet was given to diabetic mice induced by streptozocin for 6 weeks.The results showed that MF feeding 1)slightly decreased blood glucose levels and improved the ability of glucose tolerance by oral glucose tolerance test,2)decreased liver tumor necrosis factor-αlevels and increased liver glycogen levels with significance via down-regulating TLR4/NF-κB pathways,3)and significantly altered some beneficial bacteria in gut microbiota.In conclusion,the present study showed that milled flaxseed showed the potential on anti-T1D through anti-inflammation via TLR4/NF-κB and altering the gut microbiota in STZ-induced diabetic mice.
基金Supported by the National High Technology Research and Development Program of China(No.2009AA05Z407)the International Science and Technology Cooperation Program(No.2009DFA61050)+2 种基金the National Natural Science Foundation (No.90610035)the National Basic Research Program of China(No.2007CB210200)the Doctoral Foundation of the Ministry of Education of China(No.20090101110034)
文摘The structure of milled wood lignin(MWL), isolated via the Bjrkman procedure, was studied by means of 1H NMR spectroscopy and Fourier transform infrared spectroscopy, and then its pyrolytic product distribution was investigated on a pyrolysis device. MWL obtained from Manchurian Ash(MA) contained more methoxyl and free phenolic hydroxyl groups per C9 unit than MWL from Mongolian Pine(MP) due to the existence of both guaiacyl and syringyl units, which have a major influence on the pyrolysis behavior of lignin. The results of pyrolysis show that MWL from MA generated a higher yield of bio-oil, mainly composed of phenols, guaiacols, syringols and catechols, and a less yield of char, in addition to the gaseous products CO, CO2, methane and methanol, compared with MWL from MP. Guaiacol and syringol were the typical products from G-lignin and S-lignin, probably attributed to the easier cleavage of the aryl-alkyl linkage in the side chain compared with the C―OCH3 bond in the benzene ring. The degradation of MWL from MP was dominated by the demethylation reaction and the cleavage of aliphatic ―CH2OH at the γ-position, followed by the cracking of the Cα―Cβ and C4―Cα bonds.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50872089,61077039 and 61377060the Research Grants Council of the Hong Kong Special Administrative Region of China under Grant No 11211014+1 种基金the Key Program for Research on Fundamental to Application and Leading Technology of Tianjin Science and Technology Commission of China under Grant No 11JCZDJC15500the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20100032110052
文摘Transmission spectra of triangular lattice photonic crystals milled in the top surface of an annealed proton- exchange waveguide are numerically simulated. The effects of the finite depth, conical shape, trapezoidal shape and hybrid shape of holes are theoretically analyzed. Due to the difficulty of milling high aspect-ratio cylindrical holes in lithium niobate (LiNbO3 ), a compromised solution is proposed to improve the overlap between shallow holes and the waveguide mode, and useful transmission spectra with strong contrast and sharp band edges are achieved.
文摘<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement concept with dense layers of Z-axis oriented milled carbon fiber Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> prepregs, are presented. Impulse-frequency response vibration technique is used for non-destructive evaluation of the dynamic flexural modulus (stiffness) and loss factor (intrinsic damping) of woven carbon/epoxy control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates. Low-velocity punch-shear tests were performed on control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates according to ASTM D3763 Standard using a drop-weight impact test system. Control panels had all layers of 3K plain woven carbon/epoxy prepregs, with a dense interlaminar reinforcement of milled carbon fibers in Z-</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">direction used in designing the Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminate—both having same areal density. Impulse-frequency response vibration experiments show that with a 50% replacement of woven carbon fabric in control panel with milled carbon fibers in Z direction dynamic flexural modulus reduced 25%</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30% (loss in stiffness) and damping increased by about the same 25%</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30%. Low-velocity punch-shear tests demonstrated about</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">25% reduction in energy absorption for Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates with the replacement of 50% woven carbon fabric in control panel.</span></span>
基金RKG acknowledges the financial support from the National Science Foundation(NSF-CMMI 1846887)under the direction of Dr.Alexis Lewis.
文摘The influence of spark plasma sintering(SPS)temperature on microstructure,hardness and corrosion behavior of a high-energy ball milled Mg-10wt%Al alloy was investigated in this work.The holding time and sintering pressure for SPS were kept constant while varying the sintering temperature from 200 to 350℃.The grain size and microstructure were studied using X-ray diffraction analysis,scanning electron microscopy,energy dispersive X-ray spectroscopy,and Archimedes'based density measurement.Corrosion behavior was investigated using potentiodynamic polarization tests.The nanocrystalline regime(grain size<100nm)was maintained even after SPS up to 350℃.The density of the alloy increased with increasing the SPS temperature.Vickers'hardness and corrosion performance improved up to 300℃ followed by a decrease after SPS at 350℃.Possible reasons for densification,strengthening,and corrosion behavior have been discussed in the light of reduced porosity and microstructural changes.
基金Supported by Shenzhen Municipal Science and Technology Innovation Commission of China(Grant Nos.Y01336107,GJHZ20180411143506667,JCYJ20170817111811303).
文摘The Ti6Al4V parts produced by the existing selective laser melting(SLM)are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and performances of the parts.In this regard,ultrasonically-assisted machining(UAM)technique is commonly introduced to improve the machining quality due to its merits in increasing tool life and reducing cutting force.However,most of the previous studies focus on the performance of UAM with ultrasonic vibrations applied in the tangential and feed directions,whereas few of them on the impact of ultrasonic vibration along the vertical direction.In this study,the effects of feed rate on surface integrity in ultrasonically-assisted vertical milling(UAVM)of the Ti6Al4V alloy manufactured by SLM were systemically investigated compared with the conventional machining(CM)method.The results revealed that the milling forces in UAVM showed a lower amplitude than that in CM due to the intermittent cutting style.The surface roughness values of the parts produced by UAVM were generally greater than that by CM owing to the extra sinusoidal vibration textures induced by the milling cutter.Moreover,the extra vertical ultrasonic vibration in UAVM was beneficial to suppressing machining chatter.As feed rate increased,surface microhardness and thickness of the plastic deformation zone in CM raised due to more intensive plastic deformation,while these two material properties in UAVM were reduced owing to the mitigated impact effect by the high-frequency vibration of the milling cutter.Therefore,the improved surface microhardness and reduced thickness of the subsurface deformation layer in UAVM were ascribed to the vertical high-frequency impact of the milling cutter in UAVM.In general,the results of this study provided an in-depth understanding in UAVM of Ti6Al4V parts manufactured by SLM.
基金Supported by Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20141400)National Natural Science Foundation of China(Grant No.51105207)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.
基金Projects(51761032,51471054,51871125)supported by the National Natural Science Foundation of China
文摘To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy.
文摘Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.
基金Project supported by the Special Funds for Postdoctoral Research Project of China (No. 20060401035)the Hi-Tech Research and Development Program (863) of China (No. 2006AA11A159)
文摘Mg-25 wt% Mg2Ni composite was prepared by sintered method, hydrided at 613 K and then ball-milled with 1.5 wt% PdC12 additive for 51 h. The effects of PdCl2 on the hydriding and dehydriding behavior of Mg-25 wt% Mg2Ni composite were investigated. The absorption and desorption rate of the composite with PdCl2 is fast and the hydrogen storage capacity is more than that of the composite without PdCl2. The maximum hydrogen storage capacity reached 3.48 wt% at 373 K, and 5.05 wt% H at 453 K, respectively. The improvement of sorption and desorption kinetics is attributed to the catalytic effect of PdCl2, and the grain refining and lattice strain introduced by ball milling.
文摘A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability.
文摘In order to improve the utilization of milling materials,save stone resources and reduce milling energy consumption,the aged Styrene-butadiene-styrene(SBS)modified asphalt was used as a binder to prepare AC-16 asphalt mixture to simulate old asphalt pavement materials.First,the test and discrete element simulation results of uniaxial compression tests were used to calibrate the parameters of the parallel bonding contact model between asphalt mortar and aggregates.On this basis,a microscopic model of the asphalt mixture was established to simulate the old asphalt pavement.Then,the discrete element software PFC(Particle Flow Code)was used to simulate the milling process of the old asphalt pavement.Analyzed the force of the cutting tool and the utilization rate of milling materials,and the optimal milling speed and milling depth were determined.Finally,the energy consumption in the milling process was measured.It is concluded that in the process of milling the old asphalt pavement,using a cutting angle of 42°,milling speed of 0.5 m/s and milling depth of 20 mm can reduce the wear of the cutting tool.In this case,the direct utilization rate of milling materials is 85.3%,and the rate of energy consumption reduction is 33.53%.After parameter optimization,the utilization rate of milling materials can be increased by 17.4%.
基金Funded by the 863 High Technology Research Project ( No.2001AA339020 and 2002AA305302) fromthe Ministry of Scienceand Technology of China ,and bythe Excellent Young Teachers Pro-gramof MOE(2002[350])
文摘The nanostractures of the ball milled FeCo particles were characterized as functions of the ball milling time ( t ) using quantitative X- ray diffraction ( XRD ), high resolution transmission electron microscopy (HRTEM) analysis techniques. The results show that the nanocrystalliue bcc FeCo particles are available using carbonyl iron and cobalt powders as the start materials during the high-energy ball milling. At the early stage of ball milling, Co powders are easily mashed into nanocrystalllites, by which the surface of the larger Fe particles of about 80- 150 nm is coated. With t increasing, the refinement of grain size and the incorporation of defects including dislocations, disclinations and grain boundaries happen, and then FeCo alloy with a certain layered structure is formed, finally the layered stractare disappears with the formation of isotropic grains having a steadystate grain size in the nanometer regime after a certain period of t.
基金Project (No. TG20000264-06) supported by the Special Funds forMajor States Basic Research Project of MOST, China
文摘Mg2Ni0.8Cr0.2-x wt.% CoO/Al2O3 (x=0.5, 1, 2 and 3) composites were prepared by mechanically milling sintered Mg2Ni0.8Cr0.2 alloy and CoO/Al2O3 compound for 45 h. The addition of CoO/Al2O3 compound resulted in the good kinetics properties of hydriding/dehydriding reaction of the composites. The composite with 1.0 wt.% CoO/Al2O3 catalyst could reach the maximum hydrogen absorption capacity (2.9 wt.%) within 5 min at 393 K under H2 pressure of 4 MPa, and can desorb rapidly at 493 K. The decomposition and synthesis of hydrogen molecule on Mg2Ni0.8Cr0.2 alloy surface was promoted by addition of CoO/Al2O3 catalyst. In addition, the formation of metallic Ni particles, strain and defects during the ball milling process also resulted in the improved hydrogenation performance of Mg2Ni-based alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.51901105,51871125,and 51761032)Natural Science Foundation of Inner Mongolia,China(2019BS05005)+1 种基金Inner Mongolia University of Science and Technology Innovation Fund(2019QDL-B11)Major Science and Technology Innovation Projects in Shandong Province(2019JZZY010320)
文摘In this investigation,mechanical grinding was applied to fabricating the Mg-based alloys La_(7)Sm_(3)Mg_(80)Ni_(10)+5 wt.%M(M=None,TiO_(2),La_(2)O_(3))(named La_(7)Sm_(3)Mg_(80)Ni_(10)-5 M(M=None,TiO_(2),La_(2)O_(3))).The result reveals that the structures of as-milled alloys consist of amorphous and nanocrystalline.The particle sizes of the added M(M=TiO_(2),La_(2)O_(3))alloys obviously diminish in comparison with the M=None specimen,suggesting that the catalysts TiO_(2)and La_(2)O_(3)can enhance the grinding efficiency.What’s more,the additives TiO_(2)and La_(2)O_(3)observably improve the activation performance and reaction kinetics of the composite.The time required by releasing 3 wt.%hydrogen at553,573 and 593 K is 988,553 and 419 s for the M=None sample,and 578,352 and 286 s for the M=TiO_(2)composite,and 594,366,301 s for the La_(2)O_(3)containing alloy,respectively.The absolute value of hydrogenation enthalpy change|△H|of the M(M=None,TiO_(2),La_(2)O_(3))alloys is 77.13,74.28 and 75.28 kJ/mol.Furthermore,the addition of catalysts reduces the hydrogen desorption activation energy(E_(a)^(de)).