In this article, we present multiple-input receiver architecture for MIMO (Multiple-Input Multiple-Output) wireless communication applications. The proposed implementation is provided by a defined number of identical ...In this article, we present multiple-input receiver architecture for MIMO (Multiple-Input Multiple-Output) wireless communication applications. The proposed implementation is provided by a defined number of identical receiver units that are fed by a RF modulated signal on specific carrier frequency, power strength and initial phase. These units carry out the corresponding amplification, filtering and demodulation procedures. Details on design and implementation of this Printed-Circuit-Board are introduced and further discussed. Experimental results are also presented, allowing the validation of investigation on the performance of the current receiver architecture. Besides, these measurements indicate that the proposed device, combining with a suitable antenna array, provides a versatile receiver platform for baseband signal processing. The incoming RF modulated signals have frequencies on the range of 2.4 GHz, several phases, magnitudes and modulation modes. From these, it seems that the proposed receiver implementation supports MIMO communication and multiple port channel characterization applications at 2.4 GHz ISM (Industrial, Scientific and Medical) band.展开更多
文摘In this article, we present multiple-input receiver architecture for MIMO (Multiple-Input Multiple-Output) wireless communication applications. The proposed implementation is provided by a defined number of identical receiver units that are fed by a RF modulated signal on specific carrier frequency, power strength and initial phase. These units carry out the corresponding amplification, filtering and demodulation procedures. Details on design and implementation of this Printed-Circuit-Board are introduced and further discussed. Experimental results are also presented, allowing the validation of investigation on the performance of the current receiver architecture. Besides, these measurements indicate that the proposed device, combining with a suitable antenna array, provides a versatile receiver platform for baseband signal processing. The incoming RF modulated signals have frequencies on the range of 2.4 GHz, several phases, magnitudes and modulation modes. From these, it seems that the proposed receiver implementation supports MIMO communication and multiple port channel characterization applications at 2.4 GHz ISM (Industrial, Scientific and Medical) band.