大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统由于具备较多的天线数,会导致传统线性信号检测算法如最小均方误差(Minimum Mean Square Error,MMSE)的复杂度过高。针对以上问题,提出了F修正的自适应超松弛迭代(F-correc...大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统由于具备较多的天线数,会导致传统线性信号检测算法如最小均方误差(Minimum Mean Square Error,MMSE)的复杂度过高。针对以上问题,提出了F修正的自适应超松弛迭代(F-corrected Adaptive Successive over Relaxation,FA-SOR)检测算法。该算法首先利用超松弛迭代(Successive over Relaxation,SOR)算法避免高阶矩阵求逆运算,降低复杂度;其次使用F修正的公式自动更新SOR算法迭代使用的松弛参数,同时优化迭代的公式与初始解来加快收敛速度。仿真结果表明,不论在理想独立信道还是相关信道下,相比于现有的自适应SOR算法,FA-SOR都能以更低的复杂度达到更低的误码率,同时逼近MMSE算法的性能。展开更多
随着现代工业的发展和网络技术的进步,SCADA(supervisory control and data acquisition)系统面临日益增多的安全威胁,如网络攻击、系统漏洞和设备故障等。传统的异常检测方法已难以满足复杂多变的异常事件检测需求。因此,提出基于深度...随着现代工业的发展和网络技术的进步,SCADA(supervisory control and data acquisition)系统面临日益增多的安全威胁,如网络攻击、系统漏洞和设备故障等。传统的异常检测方法已难以满足复杂多变的异常事件检测需求。因此,提出基于深度学习SCADA系统异常检算法。通过深入分析SCADA系统的数据特点,设计了一个基于长短期记忆网络(LSTM)的深度学习模型,以捕捉数据中的复杂时序依赖关系,并实现异常事件的快速、准确检测。算法设计的步骤包括数据预处理、特征提取、模型选择与构建以及算法流程等,并通过一个具体的电力负荷数据集进行了实验验证。实验结果表明,所提出的基于深度学习的异常检测算法在SCADA系统异常检测领域具有显著的优势,为SCADA系统的安全和稳定运行提供了有力的技术保障。展开更多
文摘大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统由于具备较多的天线数,会导致传统线性信号检测算法如最小均方误差(Minimum Mean Square Error,MMSE)的复杂度过高。针对以上问题,提出了F修正的自适应超松弛迭代(F-corrected Adaptive Successive over Relaxation,FA-SOR)检测算法。该算法首先利用超松弛迭代(Successive over Relaxation,SOR)算法避免高阶矩阵求逆运算,降低复杂度;其次使用F修正的公式自动更新SOR算法迭代使用的松弛参数,同时优化迭代的公式与初始解来加快收敛速度。仿真结果表明,不论在理想独立信道还是相关信道下,相比于现有的自适应SOR算法,FA-SOR都能以更低的复杂度达到更低的误码率,同时逼近MMSE算法的性能。
基金The National Natural Science Foundation of Shandong Province(No.62071276)the Key Research and Development Project of the Ministry of Science and Technology(No.2020YFC0833203).
文摘随着现代工业的发展和网络技术的进步,SCADA(supervisory control and data acquisition)系统面临日益增多的安全威胁,如网络攻击、系统漏洞和设备故障等。传统的异常检测方法已难以满足复杂多变的异常事件检测需求。因此,提出基于深度学习SCADA系统异常检算法。通过深入分析SCADA系统的数据特点,设计了一个基于长短期记忆网络(LSTM)的深度学习模型,以捕捉数据中的复杂时序依赖关系,并实现异常事件的快速、准确检测。算法设计的步骤包括数据预处理、特征提取、模型选择与构建以及算法流程等,并通过一个具体的电力负荷数据集进行了实验验证。实验结果表明,所提出的基于深度学习的异常检测算法在SCADA系统异常检测领域具有显著的优势,为SCADA系统的安全和稳定运行提供了有力的技术保障。