MIMO system can provide higher capacity in independent conditions. When the spatial-temporal fading correlation exists, the capacity may decrease. In this paper, the geometrical MIMO channel model is presented with Ri...MIMO system can provide higher capacity in independent conditions. When the spatial-temporal fading correlation exists, the capacity may decrease. In this paper, the geometrical MIMO channel model is presented with Rician factor. Based on the MIMO ergodic capacity, the capacity bounds are derived with arbitrary finite number of antennas. The bounds are derived in the exact expressions in doubly correlated MIMO R/clan channel. Then a simple expression for the capacity bounds is attained for the high SNR. Finally, the tightness of derived bounds is verified by Monte Carlo simulation.展开更多
Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multipl...Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.展开更多
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple...To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.展开更多
基金Acknowledgements This work was supported by National 13asie Research Program of China (2009CB320401), National Natural Science Foundation of China (60972075, 61072055), Key Scientific and Technologi- cal Project of China 2010ZX03003-003-01, and Fundamental Research Funds for the Central Universities (2009RC0116).
文摘MIMO system can provide higher capacity in independent conditions. When the spatial-temporal fading correlation exists, the capacity may decrease. In this paper, the geometrical MIMO channel model is presented with Rician factor. Based on the MIMO ergodic capacity, the capacity bounds are derived with arbitrary finite number of antennas. The bounds are derived in the exact expressions in doubly correlated MIMO R/clan channel. Then a simple expression for the capacity bounds is attained for the high SNR. Finally, the tightness of derived bounds is verified by Monte Carlo simulation.
基金Supported by the National Natural Science Foundation of China (Nos. 11274259, 11574258) and the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing, the Minister of Educat on (Southeast Un versity) (No. UASP1305).
文摘Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.
基金supported by Sichuan Youth Science and Technology Innovation Research Team Project(No.2015TD0022)the Talents Project of Sichuan University of Science and Engineering(No.2017RCL11 and No.2017RCL10)the first batch of science and technology plan key R&D project of Sichuan province(No.2017GZ0068)
文摘To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.