将电磁矢量传感器(EVS,electromagnetic vetor sensor)信号处理法与传统MIMO信号处理有机地结合,建立了基于EVS的多天线三维信道模型。采用多重信号分类(MUSIC,multiple signal classification)算法对MIMO的达波信号方向(DOA,direction ...将电磁矢量传感器(EVS,electromagnetic vetor sensor)信号处理法与传统MIMO信号处理有机地结合,建立了基于EVS的多天线三维信道模型。采用多重信号分类(MUSIC,multiple signal classification)算法对MIMO的达波信号方向(DOA,direction of arrival)进行空间谱估计,导出基于EVS的三维空间信道解析式,阐明了EVS信号处理与MIMO多径信道相关性的关系。与传统标量传感器阵列(SSA,scalar sensor array)MIMO天线阵列比较,EVS阵列能获取达波信号的多维极化信息,同时具有空间域和极化信号处理能力。因此可缓解空间多径信道相关性,使空间极化分量的相关性趋于零值,而且使MIMO系统性能受空间结构的影响较小。理论分析和仿真结果表明在提高MIMO天线系统性能上,基于EVS阵列的系统比SSA系统具有更高的优越性。展开更多
文摘将电磁矢量传感器(EVS,electromagnetic vetor sensor)信号处理法与传统MIMO信号处理有机地结合,建立了基于EVS的多天线三维信道模型。采用多重信号分类(MUSIC,multiple signal classification)算法对MIMO的达波信号方向(DOA,direction of arrival)进行空间谱估计,导出基于EVS的三维空间信道解析式,阐明了EVS信号处理与MIMO多径信道相关性的关系。与传统标量传感器阵列(SSA,scalar sensor array)MIMO天线阵列比较,EVS阵列能获取达波信号的多维极化信息,同时具有空间域和极化信号处理能力。因此可缓解空间多径信道相关性,使空间极化分量的相关性趋于零值,而且使MIMO系统性能受空间结构的影响较小。理论分析和仿真结果表明在提高MIMO天线系统性能上,基于EVS阵列的系统比SSA系统具有更高的优越性。