Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO) is a promising solid-state electrolyte for Li-ion batteries,but Li-dendrite's formation greatly limits the applications.In this paper,we systematically investigate the st...Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO) is a promising solid-state electrolyte for Li-ion batteries,but Li-dendrite's formation greatly limits the applications.In this paper,we systematically investigate the stability,electronic properties,and Li-ion mobility of the LLZO surface by the ifrst-principles calculations.We consider the(110) and(001) slab structures with different terminations in the t-and c-LLZO.Our results indicate that both(110) and(001) surfaces prefer to form Li-rich termination due to their low surface energies for either t-or c-LLZO.Moreover,with the decrease of Li contents the stability of Li-rich surfaces is improved initially and degrades later.Unfortunately,the localized surface states at the Fermi level can induce the formation of metallic Li on the Li-rich surfaces.In comparison,Li/La-termination has a relatively low metallic Li formation tendency due to its rather low diffusion barrier.In fact,Li-ion can spontaneously migrate along path II(Li3→Li2) on the Li/La-T(001) surface.In contrast,it is more difficult for Li-ion diffusion on the Li-T(001) surface,which has a minimum diffusion barrier of 0.50 eV.Interestingly,the minimum diffusion barrier decreases to 0.34 eV when removing four Li-ions from the Li-T(001) surface.Thus,our study suggests that by varying Li contents,the stability and Li-ion diffusion barrier of LLZO surfaces can be altered favorably.These advantages can inhibit the formation of metallic Li on the LLZO surfaces.展开更多
The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the incre...The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.展开更多
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi...Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.展开更多
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve...Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.展开更多
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the ...The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.展开更多
Compared with front engine vehicle, the windward side’s flow field in cooling model of rear engine bus is complicated and it can’t be calculated by means of 1D model. For this problem, this paper has used Star-CCM t...Compared with front engine vehicle, the windward side’s flow field in cooling model of rear engine bus is complicated and it can’t be calculated by means of 1D model. For this problem, this paper has used Star-CCM to build a 3D simulation model of cooling system, engine compartment and complete vehicle. Then, it had a 1D/3D coupling calculation on cooling system with Kuli software. It could be helpful in the optimization design of the flow field of rear engine compartment and optimization match of cooling system.展开更多
The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzman...The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.展开更多
On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component ...On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component low alloy Steels during continuous cooling process was calculated. Influences of chemical composition, hot deformation of γ and cooling rate on Ar3 temperature were analyzed. Calculated Ar3 temperatures are in reasonable agreement with measured ones.展开更多
The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2...The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2 are explained. The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.展开更多
The mining loss rate and dilution rate are the key indicators for the mining technology and management level of mining enterprises. Aiming at the practical problems such as the large workload but inaccurate data of th...The mining loss rate and dilution rate are the key indicators for the mining technology and management level of mining enterprises. Aiming at the practical problems such as the large workload but inaccurate data of the traditional loss and dilution calculation method, this thesis introduces the operating principle and process of calculating the loss rate and dilution rate at the mining fields by adopting geological models. As an example, authors establishes 3D models of orebody units in the exhausted area and mining fields in Yangshu Gold Mine in Liaoning Province, and conduct Boolean calculation among the models to obtain the calculation parameters of loss and dilution, and thereby calculate out the dilution rate and loss rate of the mining fields more quickly and accurately.展开更多
In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations. The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different c...In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations. The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces. The adsorption energy of Te on the Te (001) surface is 3.29 eV, which is about 0.25 eV higher than that of Te on the Te (110). This energy difference makes the preferential growth direction along the 〈 001 〉 direction. In addition, the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2We3 and Te along 〈 001 〉 direction are considered to explain the growth of the Bi2Te3 nanoplatelets, in which Volmer-Weber model is used. The theoretical results are in agreement with experimental observation.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)i...V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.展开更多
Two calculation models of mass action concentrations for CaO-MgO-SiO_2-Al_2O_3-Cr_2O_3 penta-slag was presented whether 3CaO·Cr_2O_3·3SiO_2 was existence or not.Equilibrium mass action concentration of each ...Two calculation models of mass action concentrations for CaO-MgO-SiO_2-Al_2O_3-Cr_2O_3 penta-slag was presented whether 3CaO·Cr_2O_3·3SiO_2 was existence or not.Equilibrium mass action concentration of each element structure was gained.And the models results were compared with experimental activity.The final results illustrated the model without 3CaO·Cr_2O_33SiO_2 was suit for reality.The model could response the element structure of slag as well.展开更多
The mechanical properties of formamidinium halide perovskites FABX_3(FA=CH(NH_2)_2; B=Pb, Sn; X=Br, I)are systematically investigated using first-principles calculations. Our results reveal that FABX_3 perovskites pos...The mechanical properties of formamidinium halide perovskites FABX_3(FA=CH(NH_2)_2; B=Pb, Sn; X=Br, I)are systematically investigated using first-principles calculations. Our results reveal that FABX_3 perovskites possess excellent mechanical flexibility, ductility and strong anisotropy. We shows that the planar organic cation FA+ has an important effect on the mechanical properties of FABX3 perovskites. In addition, our results indicate that (i) the moduli(bulk modulus B, Young's modulus E, and shear modulus G) of FABBr_3 are larger than those of FABI_3 for the same B atom, and (ii) the moduli of FAPbX_3 are larger than those of FASnX_3 for the same halide atom. The reason for the two trends is demonstrated by carefully analyzing the bond strength between B and X atoms based on the projected crystal orbital Hamilton population method.展开更多
SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), ...SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), CO (PCO) and N2 (PN2) on the Si3N4-SiC stability have been studied and the related phase diagrams have been constructed. Result shows that the lowering αC and PCO/PSiO ratio and the increasing PN2 greatly elevate the Si3N4-SiC equilibrium temperature. Some previously observed experimental results related to Si3N4 and SiC formation at different temperature from the gas phase reactions have been discussed and some guides for sintering and synthesis Of the Si3N4 materials have been proposed展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12064015 and 12064014)。
文摘Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO) is a promising solid-state electrolyte for Li-ion batteries,but Li-dendrite's formation greatly limits the applications.In this paper,we systematically investigate the stability,electronic properties,and Li-ion mobility of the LLZO surface by the ifrst-principles calculations.We consider the(110) and(001) slab structures with different terminations in the t-and c-LLZO.Our results indicate that both(110) and(001) surfaces prefer to form Li-rich termination due to their low surface energies for either t-or c-LLZO.Moreover,with the decrease of Li contents the stability of Li-rich surfaces is improved initially and degrades later.Unfortunately,the localized surface states at the Fermi level can induce the formation of metallic Li on the Li-rich surfaces.In comparison,Li/La-termination has a relatively low metallic Li formation tendency due to its rather low diffusion barrier.In fact,Li-ion can spontaneously migrate along path II(Li3→Li2) on the Li/La-T(001) surface.In contrast,it is more difficult for Li-ion diffusion on the Li-T(001) surface,which has a minimum diffusion barrier of 0.50 eV.Interestingly,the minimum diffusion barrier decreases to 0.34 eV when removing four Li-ions from the Li-T(001) surface.Thus,our study suggests that by varying Li contents,the stability and Li-ion diffusion barrier of LLZO surfaces can be altered favorably.These advantages can inhibit the formation of metallic Li on the LLZO surfaces.
基金Project (50861002) supported by the National Natural Science Foundation of ChinaProject (0991051) supported by the Natural Science Foundation of Guangxi Province, China+2 种基金Project (08JJ6001) supported by the Natural Science Foundation of Hunan Province, ChinaProject (KF0803) supported by Key Laboratory of Materials Design and Preparation Technology of Hunan Province, ChinaProject (X071117) supported by the Scientific Research Foundation of Guangxi University, China
文摘The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.
基金The financial support from the National Natural Science Foundation of China(22278419,21978316,22108289,22172188)the Ministry of Science and Technology of China(2018YFB0604700)Suzhou Key Technology Research(Social Development)Project(2023ss06)。
文摘Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.
基金Sponsored by the Strategic Japanese-Chinese Cooperation Program (Grant No.2011DFA91210)the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2014075),the Fundamental Research Funds for the Central Universities (Grant No.HIT.KISTP.201419)the Natural Science Foundation of Heilongjiang Province (Grant No.E201316)
文摘Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.
基金Project supported by the Foundation of Key Laboratory of National Defense Science and Technology for Shock Wave and Detonation Physics,Chinathe Science and Research Foundation of Educational Committee of Sichuan Province,China (Grant No. 09ZC048)
文摘The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.
文摘Compared with front engine vehicle, the windward side’s flow field in cooling model of rear engine bus is complicated and it can’t be calculated by means of 1D model. For this problem, this paper has used Star-CCM to build a 3D simulation model of cooling system, engine compartment and complete vehicle. Then, it had a 1D/3D coupling calculation on cooling system with Kuli software. It could be helpful in the optimization design of the flow field of rear engine compartment and optimization match of cooling system.
基金Funded by National Natural Science Foundation of China(Nos.81371973 and 11304090)Wuhan Municipal Health and Family Planning Commission Foundation of China(No.WX15C10)
文摘The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.
文摘On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component low alloy Steels during continuous cooling process was calculated. Influences of chemical composition, hot deformation of γ and cooling rate on Ar3 temperature were analyzed. Calculated Ar3 temperatures are in reasonable agreement with measured ones.
文摘The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2 are explained. The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.
文摘The mining loss rate and dilution rate are the key indicators for the mining technology and management level of mining enterprises. Aiming at the practical problems such as the large workload but inaccurate data of the traditional loss and dilution calculation method, this thesis introduces the operating principle and process of calculating the loss rate and dilution rate at the mining fields by adopting geological models. As an example, authors establishes 3D models of orebody units in the exhausted area and mining fields in Yangshu Gold Mine in Liaoning Province, and conduct Boolean calculation among the models to obtain the calculation parameters of loss and dilution, and thereby calculate out the dilution rate and loss rate of the mining fields more quickly and accurately.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774176)the Nation Basic Research Program of China (Grant Nos 2006CB921305 and 2006CB806202)
文摘In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations. The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces. The adsorption energy of Te on the Te (001) surface is 3.29 eV, which is about 0.25 eV higher than that of Te on the Te (110). This energy difference makes the preferential growth direction along the 〈 001 〉 direction. In addition, the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2We3 and Te along 〈 001 〉 direction are considered to explain the growth of the Bi2Te3 nanoplatelets, in which Volmer-Weber model is used. The theoretical results are in agreement with experimental observation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
基金supported by the National Natural Science Foundation of China (21676036)the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing (CYB22043 and CYS22073)。
文摘V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.
文摘Two calculation models of mass action concentrations for CaO-MgO-SiO_2-Al_2O_3-Cr_2O_3 penta-slag was presented whether 3CaO·Cr_2O_3·3SiO_2 was existence or not.Equilibrium mass action concentration of each element structure was gained.And the models results were compared with experimental activity.The final results illustrated the model without 3CaO·Cr_2O_33SiO_2 was suit for reality.The model could response the element structure of slag as well.
基金Supported by the National Natural Science Foundation of China under Grant No 11572040the Thousand Young Talents Program of Chinathe Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(second phase)under Grant No U1501501
文摘The mechanical properties of formamidinium halide perovskites FABX_3(FA=CH(NH_2)_2; B=Pb, Sn; X=Br, I)are systematically investigated using first-principles calculations. Our results reveal that FABX_3 perovskites possess excellent mechanical flexibility, ductility and strong anisotropy. We shows that the planar organic cation FA+ has an important effect on the mechanical properties of FABX3 perovskites. In addition, our results indicate that (i) the moduli(bulk modulus B, Young's modulus E, and shear modulus G) of FABBr_3 are larger than those of FABI_3 for the same B atom, and (ii) the moduli of FAPbX_3 are larger than those of FASnX_3 for the same halide atom. The reason for the two trends is demonstrated by carefully analyzing the bond strength between B and X atoms based on the projected crystal orbital Hamilton population method.
文摘SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), CO (PCO) and N2 (PN2) on the Si3N4-SiC stability have been studied and the related phase diagrams have been constructed. Result shows that the lowering αC and PCO/PSiO ratio and the increasing PN2 greatly elevate the Si3N4-SiC equilibrium temperature. Some previously observed experimental results related to Si3N4 and SiC formation at different temperature from the gas phase reactions have been discussed and some guides for sintering and synthesis Of the Si3N4 materials have been proposed