期刊文献+
共找到7,172篇文章
< 1 2 250 >
每页显示 20 50 100
Errata regarding missing Ethical Statements in previously published articles:Part 2
1
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期736-736,共1页
Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are inc... Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are included below. 展开更多
关键词 statements ETHICAL missING
下载PDF
Errata regarding missing Ethical Statements in previously published articles:Part 5
2
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期739-739,共1页
Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are inc... Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are included below. 展开更多
关键词 statements ETHICAL missING
下载PDF
Errata regarding missing Ethical Statements in previously published articles:Part 3
3
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期737-737,共1页
Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are inc... Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are included below. 展开更多
关键词 statements ETHICAL missING
下载PDF
Errata regarding missing Ethical Statements in previously published articles:Part 1
4
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期735-735,共1页
Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are inc... Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are included below. 展开更多
关键词 statements ETHICAL missING
下载PDF
Errata regarding missing Ethical Statements in previously published articles:Part 4
5
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期738-738,共1页
Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are inc... Ethical statements were not included in the published version of the following articles that appeared in previous issues of Journal of Integrative Agriculture.The appropriate statements provided by the Authors are included below. 展开更多
关键词 statements ETHICAL missING
下载PDF
A Practical Approach for Missing Wireless Sensor Networks Data Recovery
6
作者 Song Xiaoxiang Guo Yan +1 位作者 Li Ning Ren Bing 《China Communications》 SCIE CSCD 2024年第5期202-217,共16页
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra... In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data. 展开更多
关键词 average cross correlation matching pursuit missing data wireless sensor networks
下载PDF
Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network
7
作者 Zihao Song Yan Zhou +2 位作者 Wei Cheng Futai Liang Chenhao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3349-3376,共28页
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis... The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design. 展开更多
关键词 missing value imputation time-series tracks probabilistic sparsity diagonal masking self-attention weight fusion
下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
8
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 High-Dimensional Covariance Matrix missing Data Sub-Gaussian Noise Optimal Estimation
下载PDF
Missing Data Imputation: A Comprehensive Review
9
作者 Majed Alwateer El-Sayed Atlam +2 位作者 Mahmoud Mohammed Abd El-Raouf Osama A. Ghoneim Ibrahim Gad 《Journal of Computer and Communications》 2024年第11期53-75,共23页
Missing data presents a significant challenge in statistical analysis and machine learning, often resulting in biased outcomes and diminished efficiency. This comprehensive review investigates various imputation techn... Missing data presents a significant challenge in statistical analysis and machine learning, often resulting in biased outcomes and diminished efficiency. This comprehensive review investigates various imputation techniques, categorizing them into three primary approaches: deterministic methods, probabilistic models, and machine learning algorithms. Traditional techniques, including mean or mode imputation, regression imputation, and last observation carried forward, are evaluated alongside more contemporary methods such as multiple imputation, expectation-maximization, and deep learning strategies. The strengths and limitations of each approach are outlined. Key considerations for selecting appropriate methods, based on data characteristics and research objectives, are discussed. The importance of evaluating imputation’s impact on subsequent analyses is emphasized. This synthesis of recent advancements and best practices provides researchers with a robust framework for effectively handling missing data, thereby improving the reliability of empirical findings across diverse disciplines. 展开更多
关键词 missing Data Machine Learning PREDICTION Deep Learning IMPUTATION
下载PDF
Cross Validation Based Model Averaging for Varying-Coefficient Models with Response Missing at Random
10
作者 Huixin Li Xiuli Wang 《Journal of Applied Mathematics and Physics》 2024年第3期764-777,共14页
In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity condi... In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error. 展开更多
关键词 Response missing at Random Model Averaging Asymptotic Optimality B-Spline Approximation
下载PDF
Comparison of two statistical methods for handling missing values of quantitative data in Bayesian N-of-1 trials: a simulation study
11
作者 Jing-Bo Zhai Tian-Ci Guo Wei-Jie Yu 《Medical Data Mining》 2024年第1期10-15,共6页
Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for a... Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for analyzing the data of N-of-1 trials.This simulation study aimed to compare two statistical methods for handling missing values of quantitative data in Bayesian N-of-1 trials.Methods:The simulated data of N-of-1 trials with different coefficients of autocorrelation,effect sizes and missing ratios are obtained by SAS 9.1 system.The missing values are filled with mean filling and regression filling respectively in the condition of different coefficients of autocorrelation,effect sizes and missing ratios by SPSS 25.0 software.Bayesian models are built to estimate the posterior means by Winbugs 14 software.Results:When the missing ratio is relatively small,e.g.5%,missing values have relatively little effect on the results.Therapeutic effects may be underestimated when the coefficient of autocorrelation increases and no filling is used.However,it may be overestimated when mean or regression filling is used,and the results after mean filling are closer to the actual effect than regression filling.In the case of moderate missing ratio,the estimated effect after mean filling is closer to the actual effect compared to regression filling.When a large missing ratio(20%)occurs,data missing can lead to significantly underestimate the effect.In this case,the estimated effect after regression filling is closer to the actual effect compared to mean filling.Conclusion:Data missing can affect the estimated therapeutic effects using Bayesian models in N-of-1 trials.The present study suggests that mean filling can be used under situation of missing ratio≤10%.Otherwise,regression filling may be preferable. 展开更多
关键词 N-of-1 trial BAYESIAN missing data simulation study
下载PDF
How Clever Miss Rabbit Was!
12
作者 张兴 张超(指导) 《中学生英语》 2024年第26期7-7,共1页
One day in autumn,Miss Rabbit went out to look for food.She found a big pumpkin very soon.She was so happy that she decided to carryit home.However,it was too heavy for her to carry.And soon she got tired.Just then,Mr... One day in autumn,Miss Rabbit went out to look for food.She found a big pumpkin very soon.She was so happy that she decided to carryit home.However,it was too heavy for her to carry.And soon she got tired.Just then,Mr.Panda came over on his bike.Miss Rabbit saw the wheels of the bike and came up with a good idea. 展开更多
关键词 RABBIT CARRY miss
下载PDF
中元古界非叠层石灰岩中的MISS:以北京延庆千沟剖面高于庄组第三段为例 被引量:10
13
作者 梅冥相 高金汉 孟庆芬 《地学前缘》 EI CAS CSCD 北大核心 2009年第5期207-218,共12页
前寒武纪碳酸盐岩多以叠层石碳酸盐岩序列为特征。燕山地区中元古界高于庄组,其中的第三段(张家裕亚组)则为一个以灰岩为主、贫乏叠层石的碳酸盐岩沉积序列,该序列被定义为前寒武纪非叠层石碳酸盐岩序列。该非叠层石碳酸盐岩沉积序列,... 前寒武纪碳酸盐岩多以叠层石碳酸盐岩序列为特征。燕山地区中元古界高于庄组,其中的第三段(张家裕亚组)则为一个以灰岩为主、贫乏叠层石的碳酸盐岩沉积序列,该序列被定义为前寒武纪非叠层石碳酸盐岩序列。该非叠层石碳酸盐岩沉积序列,尤其以燕山西部的延庆千沟剖面最为典型。根据沉积相序列及其所反映的旋回性,可以将该剖面的高于庄组第三段划分为3个三级层序。在这些三级层序的海侵体系域和早期高水位体系域中,中薄层隐晶质泥晶灰岩(均一石灰岩)和灰黑色薄层泥灰岩组成若干潮下型米级旋回;而在隐晶质泥晶灰岩层面上,普遍发育各种奇形怪状的沉积构造。这些沉积构造包括穹窿状构造、规则网状和杂乱的帐篷脊、变余波痕等,构成一个潮下相灰岩层面上的特别的微生物形成的沉积构造(Microbial Induced Sedimentary Structure,MISS)组合。因此,延庆千沟剖面的高于庄组第三段,特别的岩石类型和沉积构造成为前寒武纪碳酸盐岩沉积中非叠层石碳酸盐岩沉积序列的典型代表,尤其是那些奇形怪状的MISS所代表的沉积学特点表明:在前寒武纪,即使在叠层石生长的黄金时段,也发育非叠层石碳酸盐岩沉积序列。因此,这些现象将特别有助于对前寒武纪非叠层石生态系所造成的另一类席底生境的深入理解,也有助于复杂多变的碳酸盐岩世界。 展开更多
关键词 miss 非叠层石碳酸盐岩序列 高于庄组 中元古界 延庆千沟剖面
下载PDF
基于Near Miss的成山头水域交通冲突风险可视化 被引量:5
14
作者 谭志荣 张球林 +1 位作者 王伟 范中洲 《中国航海》 CSCD 北大核心 2016年第4期43-46,107,共5页
针对成山头水域商船与渔船交通冲突频发的现状,对船舶交通管理系统(Vessel Traffic Service,VTS)存储的船舶全程航行动态大数据进行挖掘;在交通冲突和黑点理论的基础上,基于船舶会遇提出采用Near Miss分布来定量描述水域风险的方法。在A... 针对成山头水域商船与渔船交通冲突频发的现状,对船舶交通管理系统(Vessel Traffic Service,VTS)存储的船舶全程航行动态大数据进行挖掘;在交通冲突和黑点理论的基础上,基于船舶会遇提出采用Near Miss分布来定量描述水域风险的方法。在Atlas VTS的基础上二次开发基于Near Miss的分析软件,根据Near Miss的时空特征实现水域风险可视化。以成山头水域2013年典型时段的船舶交通流数据为例,对该水域商船与渔船交通冲突风险进行可视化分析。结果表明:基于Near Miss分布的水域风险可视化方法可定量挖掘水域交通冲突风险的时空特征,有助于优化监管措施以降低潜在水域风险。 展开更多
关键词 水路运输 交通冲突 NEAR miss 时空分布 风险可视化
下载PDF
山西黎城中元古界常州沟组微生物成因构造(MISS)及其地质意义 被引量:17
15
作者 郑伟 邢智峰 《现代地质》 CAS CSCD 北大核心 2015年第4期825-832,共8页
在山西黎城县西井镇彭庄至大井盘公路旁剖面以及黄崖洞景区发育大量的微生物成因构造(MISS),多发育在砂岩表面。由于构造形态奇特,被误以为各种遗迹化石或是不规则的泥裂构造。依据其形态特征、成因构造和前人分类方案,将研究区此类构... 在山西黎城县西井镇彭庄至大井盘公路旁剖面以及黄崖洞景区发育大量的微生物成因构造(MISS),多发育在砂岩表面。由于构造形态奇特,被误以为各种遗迹化石或是不规则的泥裂构造。依据其形态特征、成因构造和前人分类方案,将研究区此类构造分为3种类型,即微生物席生长构造、微生物席破坏构造和微生物席腐烂构造,以及9个不同形态构造,即小瘤状突起、圆顶大瘤状突起、不规则侧向生长脊、大脊状生长构造、纺锤状脱水裂痕、多边形网状脱水裂痕、曲形脱水裂痕、微生物席砂片、砂火山构造,对9种不同形态的MISS进行了详细的论述。对研究区微生物成因构造(MISS)的成因进行了探讨,与豫西鲁山地区、贺兰山苏峪口地区、北京南口地区、河北兴隆地区发育的MISS及地层特征进行类比,认为MISS对华北地台中元古代地层对比以及古环境研究有重要的指导意义。 展开更多
关键词 微生物成因构造(miss) 中元古界 常州沟组 地层对比 山西黎城
下载PDF
地铁工程Near-miss知识库构建 被引量:6
16
作者 邓小鹏 周志鹏 +1 位作者 李启明 吴伟巍 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期1103-1109,共7页
针对目前地铁施工的安全管理问题,引入Near-miss(未遂事件或险兆事件)概念,构建出地铁工程的Near-miss知识库.首先,分析了地铁工程Near-miss知识的5种来源,并通过对地铁工程事故数据库的分析,得到地铁工程Near-miss知识.然后,从人员身... 针对目前地铁施工的安全管理问题,引入Near-miss(未遂事件或险兆事件)概念,构建出地铁工程的Near-miss知识库.首先,分析了地铁工程Near-miss知识的5种来源,并通过对地铁工程事故数据库的分析,得到地铁工程Near-miss知识.然后,从人员身份、机械状态、材料状态、环境状况和相互位置等5个方面对地铁工程Near-miss知识进行框架表示,并根据其特点,研究地铁工程Near-miss知识库的逻辑结构.最后,采用具有成熟管理技术的关系数据库,将Near-miss知识存储于关系数据库表中,实现了知识库和关系数据库的耦合.一个完善的地铁工程Near-miss知识库的构建,将有助于促进地铁施工安全管理能力的提高,减少地铁事故的发生. 展开更多
关键词 地铁工程 NEAR-miss 框架表示 知识库 关系数据库
下载PDF
基于Near-Miss的高速公路专项养护工程安全管理模式 被引量:9
17
作者 田卫 李慧民 +1 位作者 闫瑞琦 胡云香 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2013年第4期548-553,558,共7页
随着高速公路专项养护工程项目的不断增多,工程施工中的安全问题也越来越突显.为了减少养护作业区事故的发生,提高专项养护工程的安全管理水平,通过借鉴Near-Miss管理理论,建立了基于Near-Miss的高速公路专项养护工程安全管理系统.在此... 随着高速公路专项养护工程项目的不断增多,工程施工中的安全问题也越来越突显.为了减少养护作业区事故的发生,提高专项养护工程的安全管理水平,通过借鉴Near-Miss管理理论,建立了基于Near-Miss的高速公路专项养护工程安全管理系统.在此基础上,论述了在专项养护工程的"四方管理"模式中实现Near-Miss安全管理的过程,形成了改进的高速公路专项养护工程安全管理模式.这种从"问题出发型"向"问题发现型"转变的管理模式,将有助于从根本上解决专项养护工程中的安全问题. 展开更多
关键词 专项养护工程 Near-miss管理 安全管理 “四方管理”模式
下载PDF
基于模糊Hit-Miss变换的信息填涂卡识别方法研究 被引量:1
18
作者 夏勇 肖柏华 朱远平 《计算机应用研究》 CSCD 北大核心 2009年第5期1822-1824,共3页
介绍了一个针对信息填涂卡识别的OMR技术,这是自动阅卷系统中非常关键的一个环节。介绍了模糊Hit-Miss变换的原理,并基于该原理,详细介绍了OMR算法。为了增强系统的鲁棒性和适应性,对识别信度进行评估,并由用户根据实际情况设定适当的... 介绍了一个针对信息填涂卡识别的OMR技术,这是自动阅卷系统中非常关键的一个环节。介绍了模糊Hit-Miss变换的原理,并基于该原理,详细介绍了OMR算法。为了增强系统的鲁棒性和适应性,对识别信度进行评估,并由用户根据实际情况设定适当的阈值。实验结果表明,本文方法性能优越,有很高的实用价值。 展开更多
关键词 自动阅卷系统 光学标记识别 模糊Hit—miss变换
下载PDF
hit-or-miss拓扑上的度量:直接扩充 被引量:5
19
作者 王延庚 卫国 李瑞 《纯粹数学与应用数学》 CSCD 北大核心 2008年第4期643-645,741,共4页
设E是Hausdorff局部紧第二可数拓扑空间.用F表示由E的所有闭子集构成的超空间,其上赋予hit-or-miss拓扑.本文引入了E上的紧型度量和F上保距扩张的概念,建立了E上度量是紧型的充分必要条件,并且证明了E上任何一个紧型度量度可以直接扩充... 设E是Hausdorff局部紧第二可数拓扑空间.用F表示由E的所有闭子集构成的超空间,其上赋予hit-or-miss拓扑.本文引入了E上的紧型度量和F上保距扩张的概念,建立了E上度量是紧型的充分必要条件,并且证明了E上任何一个紧型度量度可以直接扩充为F上的保距度量. 展开更多
关键词 Alexandroff一点紧化 hit—or-miss拓扑 紧型度量 直接扩充
下载PDF
煤与瓦斯突出missForest-EGWO-SVM预测模型 被引量:12
20
作者 邵良杉 詹小凡 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2020年第3期214-218,共5页
针对煤与瓦斯突出预测的数据不完整或缺失问题,提出一种基于miss Forest-EGWO-SVM的煤与瓦斯突出预测模型。以淮南地区的实测数据作为研究样本,采用missForest算法对样本数据进行缺失值填补;为解决SVM算法性能受参数影响大的问题,利用... 针对煤与瓦斯突出预测的数据不完整或缺失问题,提出一种基于miss Forest-EGWO-SVM的煤与瓦斯突出预测模型。以淮南地区的实测数据作为研究样本,采用missForest算法对样本数据进行缺失值填补;为解决SVM算法性能受参数影响大的问题,利用高效灰狼算法(EGWO)对SVM进行参数寻优;完善后的数据集作为EGWO-SVM模型的输入进行实验,与其他模型对比。研究结果表明:采用missForest填补缺失数据,提高了模型的突出事故预测率,EGWO-SVM模型能够有效避免GWO在后期搜索中陷入局部最优,进一步提高了SVM的预测精度。研究结论为缺失数据情况下煤与瓦斯突出预测提供了一种途径。 展开更多
关键词 缺失数据 煤与瓦斯突出 missForest EGWO SVM 事故预测率
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部