为了解决在有限的互联网带宽上高效下载海量虚拟场景的"瓶颈"问题,文中针对基于对等网络(P2P)的虚拟场景渐进式传输的增量判断和场景下载源节点最优选择这两个关键点,首先将传统的兴趣域(Area of Interests,AOI)细化为兴趣扇...为了解决在有限的互联网带宽上高效下载海量虚拟场景的"瓶颈"问题,文中针对基于对等网络(P2P)的虚拟场景渐进式传输的增量判断和场景下载源节点最优选择这两个关键点,首先将传统的兴趣域(Area of Interests,AOI)细化为兴趣扇区域(Sector of Interest,SOI),又将其提升为多层增量式可扩展兴趣扇形区域(Multi-Layered&Incrementally Scalable SOI,MISSOI),给出了MISSOI的分划扩展算法,并基于MISSOI提出了一个高效的整数级SOI场景下载的拾取算法;然后设计了一个基于对等网的海量DVE场景渐进式下载框架,并给出了在P2P-DVE中快速搜索场景下载源节点以及选择最优场景下载源节点的高效算法.仿真实验结果表明作者提出的方法在可视场景下载域的拾取、下载源查询成功率和下载请求失败率等性能指标上明显好于目前主流海量虚拟场景P2PDVE传输机制FLoD,更是远优于传统的Client/Server虚拟场景传输模式.展开更多
文摘为了解决在有限的互联网带宽上高效下载海量虚拟场景的"瓶颈"问题,文中针对基于对等网络(P2P)的虚拟场景渐进式传输的增量判断和场景下载源节点最优选择这两个关键点,首先将传统的兴趣域(Area of Interests,AOI)细化为兴趣扇区域(Sector of Interest,SOI),又将其提升为多层增量式可扩展兴趣扇形区域(Multi-Layered&Incrementally Scalable SOI,MISSOI),给出了MISSOI的分划扩展算法,并基于MISSOI提出了一个高效的整数级SOI场景下载的拾取算法;然后设计了一个基于对等网的海量DVE场景渐进式下载框架,并给出了在P2P-DVE中快速搜索场景下载源节点以及选择最优场景下载源节点的高效算法.仿真实验结果表明作者提出的方法在可视场景下载域的拾取、下载源查询成功率和下载请求失败率等性能指标上明显好于目前主流海量虚拟场景P2PDVE传输机制FLoD,更是远优于传统的Client/Server虚拟场景传输模式.