期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于雾计算的制造物联网数据处理技术综述
1
作者 韩坤 王政 +1 位作者 段俊勇 杨化林 《计算机与现代化》 2024年第1期13-20,共8页
制造物联网(MIoT)是一种将制造业生产系统与互联网连接相结合的技术,数据处理更是在制造物联网中发挥着至关重要的作用。随着制造业规模的不断扩大,传统的云计算已经逐渐不能满足数据处理的需求,雾计算的发展则能有效地减少决策延迟,提... 制造物联网(MIoT)是一种将制造业生产系统与互联网连接相结合的技术,数据处理更是在制造物联网中发挥着至关重要的作用。随着制造业规模的不断扩大,传统的云计算已经逐渐不能满足数据处理的需求,雾计算的发展则能有效地减少决策延迟,提高系统效率。本文概述基于雾计算的制造物联网数据处理技术,首先介绍MIoT数据的产生、特点,以及数据处理过程中所要面对的挑战。其次,介绍基于雾计算的MIoT数据处理架构。然后,介绍雾计算数据处理的关键技术。最后,介绍该架构在部署时需要面对的挑战,以及雾计算在MIoT中应用的未来发展方向。 展开更多
关键词 MIoT 数据处理技术 雾计算 数据安全
下载PDF
基于MIoT.VC软件的生产单元数字化改造与仿真
2
作者 阙献书 《产业创新研究》 2024年第20期118-120,共3页
以轴类产品生产单元为对象,提出了一种基于工业仿真软件(MIoT.VC)的生产单元数字化改造与仿真设计方法。该生产单元由装配单元和仓储单元组成,同时配置AMR、充电桩,安全围栏,SCADA看板等外围装置。在MIoT.VC软件中导入生产单元三维模型... 以轴类产品生产单元为对象,提出了一种基于工业仿真软件(MIoT.VC)的生产单元数字化改造与仿真设计方法。该生产单元由装配单元和仓储单元组成,同时配置AMR、充电桩,安全围栏,SCADA看板等外围装置。在MIoT.VC软件中导入生产单元三维模型进行布局设计,对生产单元中的各模块设置对象的物理属性并进行仿真工艺设计,最后对服务器进行通信设置。在此基础上,利用虚拟控制器对生产单元进行仿真调试,可以优化整体运行逻辑与节拍,并对生产单元布局进行优化,与真实生产单元的控制器建立通讯后,可以实现数字孪生,实现持续的监测和分析。 展开更多
关键词 数字化改造 仿真设计 生产单元 MIoT.VC
下载PDF
物联网技术及其军事应用 被引量:8
3
作者 肖果平 《物联网技术》 2013年第1期62-64,67,共4页
物联网的快速发展,对军事方面具有显著的影响。文中首先介绍了物联网技术,详细分析了物联网的体系结构,提出了军事物联网的概念,为理论研究和探索提供了支持;同时介绍了军事物联网的应用,最后指出了军事物联网在信息安全方面所存在的问题。
关键词 物联网 MIOT 军事应用 信息安全
下载PDF
浅析5G切片制造行业应用场景 被引量:2
4
作者 李庆艳 张湘东 《广东通信技术》 2019年第7期24-27,共4页
先对5G的三大通用类型切片进行简单分析,接着对于制造业潜在时典型5G切片应用场景进行分析,旨在借此挖掘在5G发展过程中切片的主要需求点,期望5G切片为制造业的信息化发展助力.
关键词 5G切片 eMBB uRLLC mIOT
下载PDF
Emergency Prioritized and Congestion Handling Protocol for Medical Internet of Things
5
作者 Sabeen Tahir Sheikh Tahir Bakhsh Rayed AlGhamdi 《Computers, Materials & Continua》 SCIE EI 2021年第1期733-749,共17页
Medical Internet of Things(MIoTs)is a collection of small and energyefficient wireless sensor devices that monitor the patient’s body.The healthcare networks transmit continuous data monitoring for the patients to su... Medical Internet of Things(MIoTs)is a collection of small and energyefficient wireless sensor devices that monitor the patient’s body.The healthcare networks transmit continuous data monitoring for the patients to survive them independently.There are many improvements in MIoTs,but still,there are critical issues that might affect the Quality of Service(QoS)of a network.Congestion handling is one of the critical factors that directly affect the QoS of the network.The congestion in MIoT can cause more energy consumption,delay,and important data loss.If a patient has an emergency,then the life-critical signals must transmit with minimum latency.During emergencies,the MIoTs have to monitor the patients continuously and transmit data(e.g.,ECG,BP,heart rate,etc.)with minimum delay.Therefore,there is an efficient technique required that can transmit emergency data of high-risk patients to the medical staff on time with maximum reliability.The main objective of this research is to monitor and transmit the patient’s real-time data efficiently and to prioritize the emergency data.In this paper,Emergency Prioritized and Congestion Handling Protocol for Medical IoTs(EPCP_MIoT)is proposed that efficiently monitors the patients and overcome the congestion by enabling different monitoring modes.Whereas the emergency data transmissions are prioritized and transmit at SIFS time.The proposed technique is implemented and compared with the previous technique,the comparison results show that the proposed technique outperforms the previous techniques in terms of network throughput,end to end delay,energy consumption,and packet loss ratio. 展开更多
关键词 Congestion control miots emergency prioritization ENERGY-EFFICIENT
下载PDF
MIoT Based Skin Cancer Detection Using Bregman Recurrent Deep Learning
6
作者 Nithya Rekha Sivakumar Sara Abdelwahab Ghorashi +2 位作者 Faten Khalid Karim Eatedal Alabdulkreem Amal Al-Rasheed 《Computers, Materials & Continua》 SCIE EI 2022年第12期6253-6267,共15页
Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis... Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis and prediction.Among the various disease,skin cancer was the wide variety of cancer,as well as enhances the endurance rate.In recent years,many skin cancer classification systems using machine and deep learning models have been developed for classifying skin tumors,including malignant melanoma(MM)and other skin cancers.However,accurate cancer detection was not performed with minimum time consumption.In order to address these existing problems,a novel Multidimensional Bregman Divergencive Feature Scaling Based Cophenetic Piecewise Regression Recurrent Deep Learning Classification(MBDFS-CPRRDLC)technique is introduced for detecting cancer at an earlier stage.The MBDFS-CPRRDLC performs skin cancer detection using different layers such as input,hidden,and output for feature selection and classification.The patient information is composed of IoT.The patient information was stored in mobile clouds server for performing predictive analytics.The collected data are sent to the recurrent deep learning classifier.In the first hidden layer,the feature selection process is carried out using the Multidimensional Bregman Divergencive Feature Scaling technique to find the significant features for disease identification resulting in decreases time consumption.Followed by,the disease classification is carried out in the second hidden layer using cophenetic correlative piecewise regression for analyzing the testing and training data.This process is repeatedly performed until the error gets minimized.In this way,disease classification is accurately performed with higher accuracy.Experimental evaluation is carried out for factors namely Accuracy,precision,recall,F-measure,as well as cancer detection time,by the amount of patient data.The observed result confirms that the proposed MBDFS-CPRRDLC technique increases accuracy as well as lesser cancer detection time compared to the conventional approaches. 展开更多
关键词 MIoT skin cancer detection recurrent deep learning classification multidimensional bregman divergencive scaling cophenetic correlative piecewise regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部