作为一个描述非线性波在具有极性对称性的系统中传播的模型,mKdV方程对于研究非线性光学中的波动问题等有重要的价值,对其作深入研究有利于物理光学中实际问题的解决,其求解方法的研究有着重要的意义。G'/G' + G + A展开法是近...作为一个描述非线性波在具有极性对称性的系统中传播的模型,mKdV方程对于研究非线性光学中的波动问题等有重要的价值,对其作深入研究有利于物理光学中实际问题的解决,其求解方法的研究有着重要的意义。G'/G' + G + A展开法是近年来发展起来的基于齐次平衡原理的求解非线性偏微分方程的一种较为有效的方法。本文利用G'/G' + G + A展开法,运用行波变换,求解了mKdV方程,得到该方程的精确值解,并利用数学软件Maple画出了解的图像。展开更多
Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
文摘作为一个描述非线性波在具有极性对称性的系统中传播的模型,mKdV方程对于研究非线性光学中的波动问题等有重要的价值,对其作深入研究有利于物理光学中实际问题的解决,其求解方法的研究有着重要的意义。G'/G' + G + A展开法是近年来发展起来的基于齐次平衡原理的求解非线性偏微分方程的一种较为有效的方法。本文利用G'/G' + G + A展开法,运用行波变换,求解了mKdV方程,得到该方程的精确值解,并利用数学软件Maple画出了解的图像。
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.