期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
ML-kNN算法在大数据集上的高效应用 被引量:5
1
作者 陆凯 徐华 《计算机工程与应用》 CSCD 北大核心 2019年第1期84-88,共5页
k近邻多标签算法(ML-k NN)是一种懒惰学习算法,并已经成功地应用到实际生活中。随着信息量的不断增大,将ML-kNN算法运用到大数据集上已是形势所需。利用聚类算法将数据集分为几个不同的部分,然后在每一个部分中使用ML-k NN算法,并在四... k近邻多标签算法(ML-k NN)是一种懒惰学习算法,并已经成功地应用到实际生活中。随着信息量的不断增大,将ML-kNN算法运用到大数据集上已是形势所需。利用聚类算法将数据集分为几个不同的部分,然后在每一个部分中使用ML-k NN算法,并在四个规模不同的数据集上进行了一系列实验。实验结果表明,基于此思想的ML-kNN算法不论在精度、性能还是效率上都略胜一筹。 展开更多
关键词 多标签分类 ml-knn算法 聚类 大数据集
下载PDF
基于多标记ML-kNN算法的食用植物油检测研究 被引量:1
2
作者 周海琴 张红梅 靳小波 《电脑知识与技术(过刊)》 2017年第3X期265-268,共4页
随着信息科学技术的发展,多种智能处理方法已凸显出自己的优势。食用植物油高效液相色谱法与支持向量机、AdaBoost.RMH、ML-LVQ算法相结合的食用油检测方法已有所应用。本文将甘油三酸脂组成成分指纹谱数据与多多标记ML-kNN算法相结合,... 随着信息科学技术的发展,多种智能处理方法已凸显出自己的优势。食用植物油高效液相色谱法与支持向量机、AdaBoost.RMH、ML-LVQ算法相结合的食用油检测方法已有所应用。本文将甘油三酸脂组成成分指纹谱数据与多多标记ML-kNN算法相结合,用于食用植物油的分类识别与掺伪检验。首先进行甘油三酸脂组成成分指纹谱特征提取,然后构建多标号分类器,接着进行试验并评价其系统的性能。通过8种食用植物油及其混合油的测试结果表明,该算法能有效的应用于食用植物油的定性分类与定量分析。 展开更多
关键词 多标记学习 ml-knn算法 甘油三酸脂组成成分指纹谱 食用植物油脂鉴别
下载PDF
基于ML-kNN算法的大数据分类系统设计 被引量:4
3
作者 胡挺峰 《信息与电脑》 2022年第1期71-73,共3页
传统的大数据分类系统无法对海量数据的独立标签进行相关处理,导致系统内大数据的分类处理结果精确度较低。针对这一问题,提出了基于ML-kNN算法的大数据分类系统设计。系统硬件部分采用C/S混合式架构,处理器的设计选用单片机模式;系统... 传统的大数据分类系统无法对海量数据的独立标签进行相关处理,导致系统内大数据的分类处理结果精确度较低。针对这一问题,提出了基于ML-kNN算法的大数据分类系统设计。系统硬件部分采用C/S混合式架构,处理器的设计选用单片机模式;系统软件部分通过设计大数据准备模块将数据集群的节点信息分配传递到系统的处理器中,通过数据模拟层提取大数据的分类特征,依据大数据的非结构文本特点设计大数据分类模块,同时基于ML-kNN算法设计分类结果分析模块,计算出数据集的样本特征标签概率,从而完成大数据分类系统的设计。测试证明,随着数据量的不断增多,该系统分类处理数据的准确率与召回率较传统的数据分类系统具有显著优势,在大数据的分类处理方面具有更好的性能。 展开更多
关键词 ml-knn算法 大数据 混合式架构 分类系统 准确率 召回率
下载PDF
一种多标记学习入侵检测算法 被引量:3
4
作者 钱燕燕 李永忠 +1 位作者 章雷 余西亚 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第7期929-933,共5页
针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化... 针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化后验概率(maximum a posteriori,MAP)的方式推理未标记数据的所属集合。在KDD CUP99数据集上的仿真结果表明,该算法能有效地改善入侵检测系统的性能。 展开更多
关键词 多标记学习 ml-knn算法 半监督学习 入侵检测 KDD CUP99数据集
下载PDF
基于多标记与半监督学习的入侵检测方法研究 被引量:15
5
作者 钱燕燕 李永忠 余西亚 《计算机科学》 CSCD 北大核心 2015年第2期134-136,146,共4页
机器学习所关注的问题是系统如何随着经验积累自动提高分类性能,这与入侵检测通过对外界入侵进行自我学习来提高其检测率和降低误报率是一致的。因此把机器学习的理论和方法引入到入侵检测中已成为一种有效方案。文中结合多标记与半监... 机器学习所关注的问题是系统如何随着经验积累自动提高分类性能,这与入侵检测通过对外界入侵进行自我学习来提高其检测率和降低误报率是一致的。因此把机器学习的理论和方法引入到入侵检测中已成为一种有效方案。文中结合多标记与半监督学习理论,将ML-KNN算法应用于入侵检测系统。在KDD CUP99数据集上的仿真结果表明,该方法在入侵检测中能获得高检测率和低误报率。 展开更多
关键词 多标记学习 ml-knn算法 半监督学习 入侵检测
下载PDF
基于数字内容偏好的多标签分类应用
6
作者 刘斌 李笑 《计算机与现代化》 2021年第2期45-50,共6页
目前电信行业的数字内容研究主要是基于业务口径进行不同偏好的用户洞察,多以业务经验进行判断,不利于数字内容用户规模的发展扩大。为此,本文利用大流量客户的历史数据,基于多标签分类算法对数字内容偏好进行研究,得到各类别的潜在目... 目前电信行业的数字内容研究主要是基于业务口径进行不同偏好的用户洞察,多以业务经验进行判断,不利于数字内容用户规模的发展扩大。为此,本文利用大流量客户的历史数据,基于多标签分类算法对数字内容偏好进行研究,得到各类别的潜在目标客户,最终通过营销推荐客户喜好内容,提高精准营销能力。首先以M电信公司用户的基础、消费属性等脱敏数据作为数据源,并获取近3个月视频、音乐、阅读活跃用户清单,人工进行活跃维度的标注,得到初始数据集;由于正负样本不均衡,故采用多次下采样的方法随机抽样得到3份样本数据,并使用CC、ML-KNN、Rakel D等6种算法进行对比实验验证;实验结果表明:采用Rakel D及ML-KNN多标签分类算法在数字内容用户偏好洞察方面有较好的预测能力,故采用ML-KNN作为Rakel D算法的基本分类器,即Rakel D_MLKNN方法,对正负样比例不同的数据集分别进行预测,效果均优于前6种已经存在的常用多标签分类算法及传统经验选型方法。 展开更多
关键词 数字内容偏好 多标签分类 CC算法 ml-knn算法 RakelD算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部