In a traditional Mobile Cloud Computing (MCC), a stream of data produced by mobile users (MUs) is uploaded to the remote cloud for additional processing throughout the Internet. Though, due to long WAN distance it cau...In a traditional Mobile Cloud Computing (MCC), a stream of data produced by mobile users (MUs) is uploaded to the remote cloud for additional processing throughout the Internet. Though, due to long WAN distance it causes high End to End latency. With the intention of minimize the average response time and key constrained Service Delay (network and cloudlet Delay) for mobile users (MUs), offload their workloads to the geographically distributed cloudlets network, we propose the Multi-layer Latency Aware Workload Assignment Strategy (MLAWAS) to allocate MUs workloads into optimal cloudlets, Simulation results demonstrate that MLAWAS earns the minimum average response time as compared with two other existing strategies.展开更多
文摘In a traditional Mobile Cloud Computing (MCC), a stream of data produced by mobile users (MUs) is uploaded to the remote cloud for additional processing throughout the Internet. Though, due to long WAN distance it causes high End to End latency. With the intention of minimize the average response time and key constrained Service Delay (network and cloudlet Delay) for mobile users (MUs), offload their workloads to the geographically distributed cloudlets network, we propose the Multi-layer Latency Aware Workload Assignment Strategy (MLAWAS) to allocate MUs workloads into optimal cloudlets, Simulation results demonstrate that MLAWAS earns the minimum average response time as compared with two other existing strategies.