期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data
1
作者 P.K.A.Chitra S.Appavu alias Balamurugan +3 位作者 S.Geetha Seifedine Kadry Jungeun Kim Keejun Han 《Computer Systems Science & Engineering》 2024年第5期1367-1385,共19页
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor... A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods. 展开更多
关键词 Multi-label imbalanced data multi-label learning Borderline mlsmote concurrent multi-label adaptive weighted multi-label elastic net difficult minority label
下载PDF
基于特征融合与平衡数据集的蛋白质亚细胞定位预测研究
2
作者 余静 张靖 《信息技术与信息化》 2021年第3期137-139,142,共4页
确定蛋白质的亚细胞位置对于了解蛋白质的功能以及药物设计具有重要作用。在后基因时代,测序序列呈现爆发式增长,而传统实验手段无法满足海量蛋白质的亚细胞定位需求。将蛋白质亚细胞定位问题引入到机器学习领域可有效解决该难题。本文... 确定蛋白质的亚细胞位置对于了解蛋白质的功能以及药物设计具有重要作用。在后基因时代,测序序列呈现爆发式增长,而传统实验手段无法满足海量蛋白质的亚细胞定位需求。将蛋白质亚细胞定位问题引入到机器学习领域可有效解决该难题。本文提出基于PSSM-MLSMOTE方法的革兰氏阴性菌蛋白质亚细胞定位预测。首先使用AAO和PSSM-AAO方法对蛋白质序列进行特征提取,并将两种算法融合。然后采用MLSMOTE方法平衡数据集,最后将处理后的数据集输入MLkNN算法分类器中预测蛋白质的亚细胞位置。通过jackknife检验,总体召回率可达到83.4%,此模型能够有效预测蛋白质的亚细胞位置。 展开更多
关键词 亚细胞定位预测 蛋白质序列 革兰氏阴性菌 特征融合 mlsmote方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部