为做好ECMWF(European Centre for Medium-Range Weather Forecasting)模式本地化释用,提高四川省降水预报准确率,对四川省2020—2021年7—9月模式各量级降水预报系统性偏差规律分析发现,该模式预报的雨日较实况偏多,尤其是攀西地区和...为做好ECMWF(European Centre for Medium-Range Weather Forecasting)模式本地化释用,提高四川省降水预报准确率,对四川省2020—2021年7—9月模式各量级降水预报系统性偏差规律分析发现,该模式预报的雨日较实况偏多,尤其是攀西地区和川西高原;预报的大雨日数盆地西南部及攀西地区多于实况,而盆地南部少于实况。然后,基于分位数映射法对模式预报的24 h累积降水开展大量级降水订正试验与检验。基于分位数映射法订正后,暴雨及以上量级TS(Threat Score)提高7%~15%,且各量级降水TS均高于多模式集成客观预报产品2%~4%,大雨及以上、暴雨及以上量级命中率提高10%~20%,订正后雨带位置特别是暴雨落区与实况更接近。展开更多
文摘为做好ECMWF(European Centre for Medium-Range Weather Forecasting)模式本地化释用,提高四川省降水预报准确率,对四川省2020—2021年7—9月模式各量级降水预报系统性偏差规律分析发现,该模式预报的雨日较实况偏多,尤其是攀西地区和川西高原;预报的大雨日数盆地西南部及攀西地区多于实况,而盆地南部少于实况。然后,基于分位数映射法对模式预报的24 h累积降水开展大量级降水订正试验与检验。基于分位数映射法订正后,暴雨及以上量级TS(Threat Score)提高7%~15%,且各量级降水TS均高于多模式集成客观预报产品2%~4%,大雨及以上、暴雨及以上量级命中率提高10%~20%,订正后雨带位置特别是暴雨落区与实况更接近。