High-resolution modeling approach is increasingly being considered as a necessary step for improving the monitoring and predictions of regional air quality. This is especially true for highly urbanized region with com...High-resolution modeling approach is increasingly being considered as a necessary step for improving the monitoring and predictions of regional air quality. This is especially true for highly urbanized region with complex terrain and land-use. This study uses Community Multiscale Air Quality (CMAQ) model coupled with MM5 mesoscale model for a comprehensive analysis to assess the suitability of such high-resolution modeling system in predicting ozone air quality in the complex terrains of Osaka, Japan. The 1-km and 3-kin grid domains were nested inside a 9-km domain and the domain with 1-km grid covered the Osaka region. High-resolution Grid Point Value-Mesoscale Model (GPV-MSM) data were used after suitable validation. The simulated ozone concentrations were validated and evaluated using statistical metrics using performance criteria set for ozone. Daily maxima of ozone were found better simulated by the 1-krn grid domain than the coarser 9-km and 3-km domains, with the maximum improvement in the mean absolute gross error about 3 ppbv. In addition, 1-km grid results fared better than other grids at most of the observation stations that showed noticeable differences in gross error as well as correlation. These results amply justify the use of the integrated high-resolution MM5-CMAQ modeling system in the highly urbanized region, such as the Osaka region, which has complex terrain and land-use.展开更多
The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to study the transport and photochemical transformation of tro...The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to study the transport and photochemical transformation of tropospheric ozone in March 1998. The calculated mixing ratios of ozone and carbon monoxide are compared with ground level observations at three remote sites in Japan and it is found that the model reproduces the observed features very well. Examination of several high episodes of ozone and carbon monoxide indicates that these elevated levels are found in association with continental outflow, demonstrating the critical role of the rapid transport of carbon monoxide and other ozone precursors from the continental boundary layer. In comparison with available ozonesonde data, it is found that the model-calculated ozone concentrations are generally in good agreement with the measurements, and the stratospheric contribution to surface ozone mixing ratios is quite limited.展开更多
By means of a three-dimensional meteorological model(MM5)and a chemical model,the distributions of tropospheric ozone and its precursors over China have been simulated in summer and winter time,16—18 August 1994 and ...By means of a three-dimensional meteorological model(MM5)and a chemical model,the distributions of tropospheric ozone and its precursors over China have been simulated in summer and winter time,16—18 August 1994 and 7—9 January 1995.The distribution of ozone over the Tibetan Plateau in summer time is deeply discussed.The simulated results indicate that the distributions of surface ozone and NO_x are in good agreement with observed results,and human activities and photochemical reactions are the main factors controlling the surface ozone and NO_x concentrations.In addition,higher ozone concentrations are coincided with the air convergence, and the lower concentrations are related to the air divergence.In summer,over the Tibetan Plateau the strong flow convergence results in higher ozone concentrations in the lower troposphere:and the strong flow divergence results in lower ozone concentrations in the upper troposphere.In winter time ozone concentrations show Iarge-scale characteristics controlled by westerly flow,and in the jet area they are lower than those outside the jet.展开更多
文摘High-resolution modeling approach is increasingly being considered as a necessary step for improving the monitoring and predictions of regional air quality. This is especially true for highly urbanized region with complex terrain and land-use. This study uses Community Multiscale Air Quality (CMAQ) model coupled with MM5 mesoscale model for a comprehensive analysis to assess the suitability of such high-resolution modeling system in predicting ozone air quality in the complex terrains of Osaka, Japan. The 1-km and 3-kin grid domains were nested inside a 9-km domain and the domain with 1-km grid covered the Osaka region. High-resolution Grid Point Value-Mesoscale Model (GPV-MSM) data were used after suitable validation. The simulated ozone concentrations were validated and evaluated using statistical metrics using performance criteria set for ozone. Daily maxima of ozone were found better simulated by the 1-krn grid domain than the coarser 9-km and 3-km domains, with the maximum improvement in the mean absolute gross error about 3 ppbv. In addition, 1-km grid results fared better than other grids at most of the observation stations that showed noticeable differences in gross error as well as correlation. These results amply justify the use of the integrated high-resolution MM5-CMAQ modeling system in the highly urbanized region, such as the Osaka region, which has complex terrain and land-use.
基金supported by the National Natural Science Foundation of China(Grant No.40245029)the Hundred Talents Program(Global Environmental Change)from the Chinese Academy of Sciences.
文摘The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to study the transport and photochemical transformation of tropospheric ozone in March 1998. The calculated mixing ratios of ozone and carbon monoxide are compared with ground level observations at three remote sites in Japan and it is found that the model reproduces the observed features very well. Examination of several high episodes of ozone and carbon monoxide indicates that these elevated levels are found in association with continental outflow, demonstrating the critical role of the rapid transport of carbon monoxide and other ozone precursors from the continental boundary layer. In comparison with available ozonesonde data, it is found that the model-calculated ozone concentrations are generally in good agreement with the measurements, and the stratospheric contribution to surface ozone mixing ratios is quite limited.
基金National Natural Science Foundation of China under Grant 49392200.
文摘By means of a three-dimensional meteorological model(MM5)and a chemical model,the distributions of tropospheric ozone and its precursors over China have been simulated in summer and winter time,16—18 August 1994 and 7—9 January 1995.The distribution of ozone over the Tibetan Plateau in summer time is deeply discussed.The simulated results indicate that the distributions of surface ozone and NO_x are in good agreement with observed results,and human activities and photochemical reactions are the main factors controlling the surface ozone and NO_x concentrations.In addition,higher ozone concentrations are coincided with the air convergence, and the lower concentrations are related to the air divergence.In summer,over the Tibetan Plateau the strong flow convergence results in higher ozone concentrations in the lower troposphere:and the strong flow divergence results in lower ozone concentrations in the upper troposphere.In winter time ozone concentrations show Iarge-scale characteristics controlled by westerly flow,and in the jet area they are lower than those outside the jet.