发展了一种基于MOF(Moment of Fluid)界面重构的二维中心型MMALE(Multi-Material Arbitrary Lagrangian-Eulerian)方法.其中,流体力学方程组采用中心型拉氏方法进行离散求解.混合网格的热力学封闭采用Tipton压力松弛模型.混合网格内的...发展了一种基于MOF(Moment of Fluid)界面重构的二维中心型MMALE(Multi-Material Arbitrary Lagrangian-Eulerian)方法.其中,流体力学方程组采用中心型拉氏方法进行离散求解.混合网格的热力学封闭采用Tipton压力松弛模型.混合网格内的界面重构采用MOF方法,并对MOF方法作了简化和改进.重映步采用一种基于多边形剪裁算法的精确积分守恒重映方法.计算了若干数值例子,包括二维漩涡发展问题、Sedov问题、激波与氦气泡相互作用问题、水中强激波与空气泡相互作用问题、二维RT不稳定性问题等.数值算例表明,该方法具有二阶精度,能够计算界面两侧密度比和压力比很大的问题,并且其健壮性优于交错型MMALE方法,适合计算多介质复杂流体动力学问题.展开更多
A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapp...A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.展开更多
文摘发展了一种基于MOF(Moment of Fluid)界面重构的二维中心型MMALE(Multi-Material Arbitrary Lagrangian-Eulerian)方法.其中,流体力学方程组采用中心型拉氏方法进行离散求解.混合网格的热力学封闭采用Tipton压力松弛模型.混合网格内的界面重构采用MOF方法,并对MOF方法作了简化和改进.重映步采用一种基于多边形剪裁算法的精确积分守恒重映方法.计算了若干数值例子,包括二维漩涡发展问题、Sedov问题、激波与氦气泡相互作用问题、水中强激波与空气泡相互作用问题、二维RT不稳定性问题等.数值算例表明,该方法具有二阶精度,能够计算界面两侧密度比和压力比很大的问题,并且其健壮性优于交错型MMALE方法,适合计算多介质复杂流体动力学问题.
文摘针对多介质可压缩流体动力学问题,提出了一种单元中心型二维MMALE(Multi-Material Arbitrary Lagrangian-Eulerian)方法。在拉氏步,流体力学方程组采用中心型间断有限元方法求解。对于混合网格,采用Tipton压力松弛模型更新物理量,用等参坐标法更新物质中心点坐标。界面重构采用一种健壮的MOF(Moment of Fluid)方法。在重映步提出了基于多边形相交的二阶积分守恒重映方法。该方法分为四个部分:多项式重构、多边形相交、积分和后验校正。多边形相交使用"剪裁投影"算法,显著降低了多边形相交算法的复杂度。后验校正是基于MOOD (Multi-dimensional Optimal Order Detection)限制策略,并做了一些改动以适应多介质的计算。数值算例表明,该方法具有二阶的精度和较好的鲁棒性。
基金Project supported by the China Postdoctoral Science Foundation(No.2017M610823)
文摘A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.