期刊文献+
共找到1,701篇文章
< 1 2 86 >
每页显示 20 50 100
Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations 被引量:3
1
作者 Amir Hossein Yaghtin Erfan Salahinejad Ali Khosravifard 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期951-956,共6页
Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced i... Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes. 展开更多
关键词 metallic matrix composites particle reinforced composites NANOSTRUCTURES ALUMINUM boron carbide roll bonding tensile properties
下载PDF
Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression
2
作者 Mahmoud Ebrahimi Li Zhang +2 位作者 Qudong Wang Hao Zhou Wenzhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1608-1617,共10页
This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC pro... This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC process significantly affects the damping performance of the composite due to alterations in the density of dislocations and grain boundaries in the matrix alloy.Although there would be dynamic precipitation of the Mg17Al12 phase during processing which increases the phase interface and limits the mobility of dislocations and grain boundaries.The results also showed that the damping capacity of 1%SiC_(np)/AZ91D composite continuously decreases with adding CEC pass number and it consistently increases with rising the applied temperature.Considering the first derivative of the tanδ-T curve,the dominant damping mechanism based on test temperature can be divided into three regions.These three regions are as follows(i)dislocation vibration of the weak pinning points(≤T_(cr)),(ii)dislocation vibration of the strong pinning points(T_(cr)∼T_(V)),and(iii)grain boundary/interface sliding(≥T_(V)) 展开更多
关键词 Metal matrix composite SiC nanoparticles Severe plastic deformation Temperature-dependent damping curves Damping mechanism
下载PDF
Development and Characterization of Aluminium-Based Metal Matrix Composites
3
作者 M. A. Gafur Al Fahad Ahmed +1 位作者 Raisul Abrar Surya Sabrin Soshi 《Materials Sciences and Applications》 CAS 2023年第1期1-19,共19页
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi... Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials. 展开更多
关键词 Al AA-6061 AA-4032 SiC AL2O3 Stir-Casting Metal matrix Composite MMC NANOcomposites
下载PDF
Statistical Analyses of the Strengths of Particulate Reinforced Metal Matrix Composites(PRMMCs)Subjected to Multiple Tensile and Shear Stresses 被引量:1
4
作者 Geng Chen Shengzhen Xin +1 位作者 Lele Zhang Christoph Broeckmann 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期39-50,共12页
For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To ... For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To this end,a computational approach consists of the direct methods,homogenization,and statistical analyses is introduced in our previous studies.Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear stresses,the established approach is extended in the present work to take into account of these situations.In this paper,ultimate strengths and endurance limits of an exemplary PRMMC material,WC-Co,are predicted under three independently varied tensile and shear stresses.In order to cover the entire load space with least amount of weight factors,a new method for generating optimally distributed weight factors in an n dimensional space is formulated.Employing weight factors determined by this algorithm,direct method calculations were performed on many statistically equivalent representative volume elements(SERVE)samples.Through analyzing statistical characteristics associated with results the study suggests a simplified approach to estimate the material strength under superposed stresses without solving the difficult high dimensional shakedown problem. 展开更多
关键词 Direct methods(DM) Particulate reinforce metal matrix composites(PRmmcs) Random heterogeneous materials
下载PDF
Probabilistic Modelling of Microstructural Evolution in Zr Based Bulk Metallic Glass Matrix Composites during Solidification in Additive Manufacturing
5
作者 Muhammad Musaddique Ali Rafique 《Engineering(科研)》 2018年第4期130-141,共12页
Bulk metallic glass and their composites (BMGMCs) are a new class of materials which possess superior mechanical properties as compared to existing conventional materials. Owing to this, they are potential candidates ... Bulk metallic glass and their composites (BMGMCs) are a new class of materials which possess superior mechanical properties as compared to existing conventional materials. Owing to this, they are potential candidates for tomorrow’s structural applications. However, they suffer from poor ductility and little or no toughness which render them brittle and they manifest catastrophic failure under applied force. Their behavior is dubious, unpredictable and requires extensive experimentation to arrive at conclusive results. In present study, an effort has been made to design bulk metallic glass matrix composites by the use of modeling and simulation. A probabilistic cellular automaton (CA) model is developed and described in present study by author which is used in conjunction with earlier developed deterministic model to predict microstructural evolution in Zr based BMGMCs in additive manufacturing liquid melt pool. It is elaborately described with an aim to arrive at quantitative relations which describe process and steps of operations. Results indicate that effect of incorporating all mass transfer and diffusion coefficients under transient conditions and precise determination of probability number play a vital role in refining the model and bringing it closer to a level that it could be compared to actual values. It is shown that proposed tailoring can account for microstructural evolution in metallic glasses. 展开更多
关键词 BULK metallic Glass matrix composites SOLIDIFICATION Cellular AUTOMATA Method
下载PDF
Fabrication,microstructures,and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes 被引量:12
6
作者 NIE Junhui JIA Chengchang +3 位作者 JIA Xian ZHANG Yafeng SHI Na LI Yi 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期401-407,共7页
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p... Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites. 展开更多
关键词 metallic matrix composites mechanical properties ball milling MOLYBDENUM carbon nanotubes
下载PDF
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
7
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites mmcs carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
Microstructure and thermal properties of copper matrix composites reinforced with titanium-coated graphite fibers 被引量:10
8
作者 Hao-Ming Zhang Xin-Bo He +2 位作者 Xuan-Hui Qu Qian Liu Xiao-Yu Shen 《Rare Metals》 SCIE EI CAS CSCD 2013年第1期75-80,共6页
Milled form of mesophase pitch-based graphite fibers were coated with a titanium layer using chemical vapor deposition technique and Ti-coated graphite fiber/Cu composites were fabricated by hot-pressing sintering. Th... Milled form of mesophase pitch-based graphite fibers were coated with a titanium layer using chemical vapor deposition technique and Ti-coated graphite fiber/Cu composites were fabricated by hot-pressing sintering. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopies, and by mea- suring thermal properties, including thermal conductivity and coefficient of thermal expansion (CTE). The results show that the milled fibers are preferentially oriented in a plane perpendicular to the pressing direction, leading to anisotropic thermal properties of the composites. The Ti coating reacted with graphite fiber and formed a continuous and uniform TiC layer. This carbide layer establishes a good metallurgical interracial bonding in the composites, which can improve the thermal properties effectively. When the fiber content ranges from 35 vol% to 50 vol%, the in-plane thermal conductivities of the composites increase from 383 to 407 W.(m.K)-~, and the in-plane CTEs decrease from 9.5 x 10-6 to 6.3 10-6 K-1. 展开更多
关键词 Metal matrix composites Titanium coating MICROSTRUCTURE Thermal conductivity Coefficient of thermal expansion
下载PDF
Wear Studies on Metal Matrix Composites: a Taguchi Approach 被引量:8
9
作者 S.Basavarajappa G.Chandramohan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期845-850,共6页
An attempt has been made to study the influence of wear parameters like applied load, sliding speed, sliding distance and percentage of reinforcement on the dry sliding wear of the metal matrix composites. A plan of e... An attempt has been made to study the influence of wear parameters like applied load, sliding speed, sliding distance and percentage of reinforcement on the dry sliding wear of the metal matrix composites. A plan of experiments, based on techniques of Taguchi, was performed to acquire data in controlled way. An orthogonal array and the analysis of variance were employed to investigate the influence of process parameters on the wear of composites. The objective is to establish a correlation between dry sliding wear of composites and wear parameters. These correlations were obtained by multiple regressions. Finally, confirmation tests were conducted to verify the experimental results foreseen from the mentioned correlations. 展开更多
关键词 Metal matrix composites WEAR Orthogonal array Analysis of variance Taguchi method
下载PDF
Microstructure evolution of rare earth Pr modified alumina-silicate short fiber-reinforced Al-Si metal matrix composites 被引量:6
10
作者 Peng Jihua Li Wenfang +3 位作者 Huang Fangliang Tian Jun Liu Gang Du Jun 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期164-168,共5页
Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect ... Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the matrix. The addition of Pr promotes interface SiO2 reduction,and SiO2 comes from the crystallization of Al2O3-SiO2 short fibers. 展开更多
关键词 metal matrix composite microstructure evolution MICROSCOPE Al-Si alloys rare earth
下载PDF
Effect of particle characteristics on deformation of particle reinforced metal matrix composites 被引量:6
11
作者 张鹏 李付国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期655-661,共7页
The particle characteristics of 15%SiC particles reinforced metal matrix composites(MMC)made by powder metallurgy route were studied by using a statistical method.In the analysis,the approach for estimation of the cha... The particle characteristics of 15%SiC particles reinforced metal matrix composites(MMC)made by powder metallurgy route were studied by using a statistical method.In the analysis,the approach for estimation of the characteristics of particles was presented.The study was carried out by using the mathematic software MATLAB to calculate the area and perimeter of each particle, in which the image processing technique was employed.Based on the calculations,the sizes and shape factors of each particle were investigated respectively.Additionally,the finite element model(FEM)was established on the basis of the actual microstructure.The contour plots of von Mises effective stress and strain in matrix and particles were presented in calculations for considering the influence of microstructure on the deformation behavior of MMC.Moreover,the contour maps of the maximum stress of particles and the maximum plastic strain of matrix in the vicinity of particles were introduced respectively. 展开更多
关键词 metal matrix composites deformation mechanism particle characteristic finite element model
下载PDF
Ballistic performance of tungsten particle/metallic glass matrix composite long rod 被引量:4
12
作者 Ji-cheng Li Xiao-wei Chen Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期132-145,共14页
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ... In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little. 展开更多
关键词 TUNGSTEN particle/metallic glass matrix (WP/MG)composite BALLISTIC performance Shear band Self-sharpening Numerical analysis
下载PDF
Development of three kinds of active ternary filler metals of AI-Si-Ti, Zn-AI-Ti and Cu-AI-Ti systems for AI metal matrix composites 被引量:5
13
作者 张贵锋 苏伟 +3 位作者 郭洋 廖先金 张建勋 铃村晓男 《China Welding》 EI CAS 2011年第2期73-80,共8页
To improve the wettability of common fiUer metals on Al metal matrix composites ( AI-MMCs ) , three kinds of active ternary filler metals, Al-Si-Ti, Zn-Al-Ti and Cu-Al-Ti systems, were prepared by the addition of Ti... To improve the wettability of common fiUer metals on Al metal matrix composites ( AI-MMCs ) , three kinds of active ternary filler metals, Al-Si-Ti, Zn-Al-Ti and Cu-Al-Ti systems, were prepared by the addition of Ti. Excessive melting temperature made the gravity segregation of Ti remarkable in ingot. The effect of Ti content on the melting point for AI-Si-Ti ternary system was not as sensitive as that for Al-Ti binary system. The Al-12Si-1Ti filler metal showed good ability to form brazing foil during rapid cooling, ductile fracture surface and similar shear strength to conventional Al-12Si filler metal. Moreover, the Al2 03 reinforcements on initial surface could be covered by the Al-12Si-1Ti filler metal without interfacial gaps after sessile drop test. For Zn-9.5Al-0. 5 Ti braze alloy, severe vaporization of Zn and severe segregation of Ti Occurred. During wettability test for traditional Al-12Si and Zn-9.5Al-0. 5Ti, although some Si or Zn could penetrate into the composite, interfacial gap still remained. The prepared Cu-19Al-1 Ti interlayer consisted of primary phase of Al4Cu9 and network Cu-Al-Ti ternary intermetaUic compound, showing poor ability to form foil and very brittle nature. These results demonstrated that Al-Si-Ti system should be promising for Al-MMCs. 展开更多
关键词 BRAZING transient liquid phase bonding metal matrix composites WETTABILITY
下载PDF
Thermal residual stresses and stress distributions under tensile and compressive loadings of short fiber reinforced metal matrix composites 被引量:5
14
作者 丁向东 连建设 +1 位作者 江中浩 孙军 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期399-404,共6页
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele... The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [ 展开更多
关键词 metal matrix composite finite element method thermal residual stresses stress distribution
下载PDF
Laser Additive Manufacturing on Metal Matrix Composites: A Review 被引量:5
15
作者 Neng Li Wei Liu +4 位作者 Yan Wang Zijun Zhao Taiqi Yan Guohui Zhang Huaping Xiong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期195-210,共16页
Important progresses in the study of laser additive manufacturing on metal matrix composites(MMCs)have been made.Recent efforts and advances in additive manufacturing on 5 types of MMCs are presented and reviewed.The ... Important progresses in the study of laser additive manufacturing on metal matrix composites(MMCs)have been made.Recent efforts and advances in additive manufacturing on 5 types of MMCs are presented and reviewed.The main focus is on the material design,the combination of reinforcement and the metal matrix,the synthesis principle during the manufacturing process,and the resulted microstructures as well as properties.Thereafter,the trend of development in future is forecasted,including:Formation mechanism and reinforcement principle of strengthening phase;Material and process design to actively achieve expected performance;Innovative structure design based on the special properties of laser AM MMCs;Simulation,monitoring and optimization in the process of laser AM MMCs. 展开更多
关键词 Laser additive manufacturing Metal matrix composites MICROSTRUCTURE PROPERTY
下载PDF
Nano-SiC_P particles distribution and mechanical properties of Al-matrix composites prepared by stir casting and ultrasonic treatment 被引量:2
16
作者 Shu-sen Wu Du Yuan +2 位作者 Shu-lin Lü Kun Hu Ping An 《China Foundry》 SCIE 2018年第3期203-209,共7页
Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC_Particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-... Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC_Particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-metal process combined with high energy ball milling and ultrasonic vibration methods. The nano particles were β-SiC_P with an average diameter of 40 nm, and pre-oxidized at about 850 °C to form an oxide layer with a thickness of approximately 3 nm. The mm-sized composite granules containing nano-SiC_P were fi rstly produced by milling the mixture of oxidized nano-SiC_P and pure Al powders, and then were remelted in the matrix-metal melt with mechanical stirring and treated by ultrasonic vibration to prepare the composite. SEM analysis results show that the nano-SiC_P articles are distributed uniformly in the matrix and no serious agglomeration is observed. The tensile strength and elongation of the composite with 2 wt.% nano-SiC_P in as-cast state are 226 MPa and 5.5%, improved by 20% and 44%, respectively, compared with the A356 alloy. 展开更多
关键词 metal matrix composites SiC nanopaticles A356 aluminum alloy SOLID-LIQUID mixed CASTING ULTRASONIC vibration
下载PDF
Advances in graphene reinforced metal matrix nanocomposites:Mechanisms,processing,modelling,properties and applications 被引量:4
17
作者 Wenge Chen Tao Yang +7 位作者 Longlong Dong Ahmed Elmasry Jiulong Song Nan Deng Ahmed Elmarakbi Terence Liu Hai Bao Lv Yong Qing Fu 《Nanotechnology and Precision Engineering》 CAS CSCD 2020年第4期189-210,共22页
Graphene has been extensively explored to enhance functional and mechanical properties of metalmatrix nanocomposites for wide-range applications due to their superior mechanical,electrical and thermal properties.This ... Graphene has been extensively explored to enhance functional and mechanical properties of metalmatrix nanocomposites for wide-range applications due to their superior mechanical,electrical and thermal properties.This article discusses recent advances of key mechanisms,synthesis,manufacture,modelling and applications of graphene metal matrix nanocomposites.The main strengthening mechanisms include load transfer,Orowan cycle,thermal mismatch,and refinement strengthening.Synthesis technologies are discussed including some conventional methods(such as liquid metallurgy,powdermetallurgy,thermal spraying and deposition technology)and some advanced processing methods(such as molecular-level mixing and friction stir processing).Analytical modelling(including phenomenological models,semi-empirical models,homogenization models,and self-consistent model)and numerical simulations(including finite elements method,finite difference method,and boundary element method)have been discussed for understanding the interface bonding and performance characteristics between graphene and different metal matrices(Al,Cu,Mg,Ni).Key challenges in applying graphene as a reinforcing component for the metal matrix composites and the potential solutions as well as prospectives of future development and opportunities are highlighted. 展开更多
关键词 GRAPHENE Metal matrix composites Strengthening mechanism Synthesis method MODELLING
下载PDF
Fabrication and abrasive wear properties of metal matrix composites reinforced with three-dimensional network structure 被引量:2
18
作者 WANG Shouren GENG Haoran +3 位作者 LI Kunshan SONG Bo WANG Yingzi HUI Linhai 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期671-679,共9页
Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-por... Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement. 展开更多
关键词 metal matrix composites INFILTRATION fficdon and wear three dimensional network structure MICROSTRUCTURE
下载PDF
Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering 被引量:10
19
作者 Wen-ming Tian Song-mei Li +3 位作者 Bo Wang Xin Chen Jian-hua Liu Mei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期723-729,共7页
Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testi... Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide(Al_4C_3) is not formed during SPS processing. Further addition of graphene(above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration. 展开更多
关键词 metal matrix composites spark plasma sintering aluminum graphene mechanical properties
下载PDF
Interface-dominated mechanical behavior in advanced metal matrix composites 被引量:3
20
作者 Qiang Guo Yifan Han Di Zhang 《Nano Materials Science》 CAS 2020年第1期66-71,共6页
Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure ... Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure and properties of the reinforcement/matrix interface play a crucial role.This article reviews recent developments in measuring the interfacial properties in advanced MMCs,with an emphasis on the use of micro-/nano-mechanical testing approaches.It is shown that,with the novel in situ and ex situ experimental capability,researchers can now obtain some of the critical interfacial properties as well as the effects of reinforcement/matrix interfaces on the composites’deformation and failure mechanisms that were unattainable previously by conventional methodologies.Moreover,the micro-/nano-mechanical testing platform allows for both fundamental and applied research on the composites’mechanical performance under service conditions,which is considered a promising and emerging research direction. 展开更多
关键词 METAL matrix composites INTERFACE Mechanical behavior NANOSTRUCTURE Strengthening
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部