The performance of a microwave monolithic integrated circuit .(MMIC) amplifier with high output power in the Ka-band is presented. Using 75mm 0.25μm GaAs PHEMT technology provided by the Hebei Semiconductor Researc...The performance of a microwave monolithic integrated circuit .(MMIC) amplifier with high output power in the Ka-band is presented. Using 75mm 0.25μm GaAs PHEMT technology provided by the Hebei Semiconductor Research Institute, this three-stage power amplifier, with a chip size of 19.25mm^2 (3.5mm × 5.5mm), on 100μm GaAs substrate achieves a linear gain of more than 16dB in the 32.5-35.5GHz frequency range,with an average output power at 1dB gain compression of P1dB = 29. 8dBm and a maximum saturated output power of Psat = 31dBm.展开更多
A monolithic power amplifier designed for 3GHz communication applications with improved gain flatness is studied based on InGaP/GaAs hetero-junction bipolar transistor technology in a commercial foundry. To improve ga...A monolithic power amplifier designed for 3GHz communication applications with improved gain flatness is studied based on InGaP/GaAs hetero-junction bipolar transistor technology in a commercial foundry. To improve gain flatness in a simple way, no external component was used in the real circuit except the decoupled bypass capacitors and RF choke. The measured linear gain is 23dB with gain flatness of +_ 0.25dB,satisfying the design goal and matching well with simulation results. This 2-stage power amplifier can deliver 31dBm linear output power and 44% power-added efficiency in the 400MHz bandwidth. The successful design with improved gain flatness is the result of superior distortion compensation and a coil model used as the RF choke.展开更多
文摘The performance of a microwave monolithic integrated circuit .(MMIC) amplifier with high output power in the Ka-band is presented. Using 75mm 0.25μm GaAs PHEMT technology provided by the Hebei Semiconductor Research Institute, this three-stage power amplifier, with a chip size of 19.25mm^2 (3.5mm × 5.5mm), on 100μm GaAs substrate achieves a linear gain of more than 16dB in the 32.5-35.5GHz frequency range,with an average output power at 1dB gain compression of P1dB = 29. 8dBm and a maximum saturated output power of Psat = 31dBm.
文摘A monolithic power amplifier designed for 3GHz communication applications with improved gain flatness is studied based on InGaP/GaAs hetero-junction bipolar transistor technology in a commercial foundry. To improve gain flatness in a simple way, no external component was used in the real circuit except the decoupled bypass capacitors and RF choke. The measured linear gain is 23dB with gain flatness of +_ 0.25dB,satisfying the design goal and matching well with simulation results. This 2-stage power amplifier can deliver 31dBm linear output power and 44% power-added efficiency in the 400MHz bandwidth. The successful design with improved gain flatness is the result of superior distortion compensation and a coil model used as the RF choke.