A wet etching process for backside via holes suitable for use on InP MMICs technologies is developed for indium phosphide substrate.PMMA is used to mount InP wafer onto glass carrier.Spattered Ta film is utilized as e...A wet etching process for backside via holes suitable for use on InP MMICs technologies is developed for indium phosphide substrate.PMMA is used to mount InP wafer onto glass carrier.Spattered Ta film is utilized as etch mask.HCl+H 3PO 4 solution realised a etch until a depth of 100μm.It is demonstrated that the wet etching backside process is controllable with large latitudes.展开更多
The development of an AIGaN/GaN HEMT power MMIC on SI-SiC designed in microstrip technology is pres- ented. A recessed-gate and a field-plate are used in the device processing to improve the performance of the AIGaN/G...The development of an AIGaN/GaN HEMT power MMIC on SI-SiC designed in microstrip technology is pres- ented. A recessed-gate and a field-plate are used in the device processing to improve the performance of the AIGaN/GaN HEMTs. S-parameter measurements show that the frequency performance of the AIGaN/GaN HEMTs depends significantly on the operating voltage. Higher operating voltage is a key to higher power gain for the AIGaN/GaN HEMTs. The developed 2-stage power MMIC delivers an output power of more than 10W with over 12dB power gain across the band of 9-11GHz at a drain bias of 30V. Peak output power inside the band reaches 14.7W with a power gain of 13.7dB and a PAE of 23%. The MMIC chip size is only 2.0mm × 1. 1mm. This work shows superiority over previously reported X-band AIGaN/GaN HEMT power MMICs in output power per millimeter gate width and output power per unit chip size.展开更多
Tantalum nitride (TAN) and nichrome (NiCr) are the two most common materials used as thin film resistors (TFR) for monolithic microwave integrated circuits (MMIC) based on AlGaN/GaN high electron mobility tran...Tantalum nitride (TAN) and nichrome (NiCr) are the two most common materials used as thin film resistors (TFR) for monolithic microwave integrated circuits (MMIC) based on AlGaN/GaN high electron mobility transistors (HEMTs). In this study,we compare the reliability of the two materials used as TFRs on a semi-insulation 4H SiC substrate. Through the comparison between NiCr and TaN thin-film resistor materials, we find the square resistor (Rs) of TaN TFR increases as the annealing temperature increases. However, the R s of NiCr TFR shows the opposite trend. We also find the change of the TaN Rs and contacted resistor (Re) is smaller than the NiCr. After O2 plasma exposure in RIE,the TaN R s only decreases 0.7Ω,or about 2.56%, and R c increases 0.1Ω,or about 6.6%, at an annealing temperature of 400℃. In contrast, the NiCr R s and R c show large changes at different annealing temperatures after O2 plasma exposure. In conclusion,TaN is more stable during plasma exposure after 400℃ annealing in N2 ambient.展开更多
1.0μm gate-length GaAs-based MHEMTs have been fabricated by MBE epitaxial material and contact-mode lithography technology. Pt/Ti/Pt/Au and Ti/Pt/Au were evaporated to form gate metals. Excellent DC and RF performanc...1.0μm gate-length GaAs-based MHEMTs have been fabricated by MBE epitaxial material and contact-mode lithography technology. Pt/Ti/Pt/Au and Ti/Pt/Au were evaporated to form gate metals. Excellent DC and RF performances have been obtained, and the transconductance, maximum saturation drain current density, threshold voltage, current cut-off frequency,and maximum oscillation frequency of Pt/Ti/Pt/Au and Ti/Pt/Au MHEMTs were 502 (503) mS/mm, 382(530)mA/mm,0.1( - 0.5)V,13.4(14.8)GHz,and 17.0(17.5)GHz,respectively. DC-10GHz single-pole double-throw (SPDT) switch MMICs have been designed and fabricated by Ti/Pt/Au MHEMTs. Insertion loss,isolation,input,and out- put return losses of SPDT chips were better than 2.93,23.34,and 20dB.展开更多
文摘A wet etching process for backside via holes suitable for use on InP MMICs technologies is developed for indium phosphide substrate.PMMA is used to mount InP wafer onto glass carrier.Spattered Ta film is utilized as etch mask.HCl+H 3PO 4 solution realised a etch until a depth of 100μm.It is demonstrated that the wet etching backside process is controllable with large latitudes.
文摘The development of an AIGaN/GaN HEMT power MMIC on SI-SiC designed in microstrip technology is pres- ented. A recessed-gate and a field-plate are used in the device processing to improve the performance of the AIGaN/GaN HEMTs. S-parameter measurements show that the frequency performance of the AIGaN/GaN HEMTs depends significantly on the operating voltage. Higher operating voltage is a key to higher power gain for the AIGaN/GaN HEMTs. The developed 2-stage power MMIC delivers an output power of more than 10W with over 12dB power gain across the band of 9-11GHz at a drain bias of 30V. Peak output power inside the band reaches 14.7W with a power gain of 13.7dB and a PAE of 23%. The MMIC chip size is only 2.0mm × 1. 1mm. This work shows superiority over previously reported X-band AIGaN/GaN HEMT power MMICs in output power per millimeter gate width and output power per unit chip size.
文摘Tantalum nitride (TAN) and nichrome (NiCr) are the two most common materials used as thin film resistors (TFR) for monolithic microwave integrated circuits (MMIC) based on AlGaN/GaN high electron mobility transistors (HEMTs). In this study,we compare the reliability of the two materials used as TFRs on a semi-insulation 4H SiC substrate. Through the comparison between NiCr and TaN thin-film resistor materials, we find the square resistor (Rs) of TaN TFR increases as the annealing temperature increases. However, the R s of NiCr TFR shows the opposite trend. We also find the change of the TaN Rs and contacted resistor (Re) is smaller than the NiCr. After O2 plasma exposure in RIE,the TaN R s only decreases 0.7Ω,or about 2.56%, and R c increases 0.1Ω,or about 6.6%, at an annealing temperature of 400℃. In contrast, the NiCr R s and R c show large changes at different annealing temperatures after O2 plasma exposure. In conclusion,TaN is more stable during plasma exposure after 400℃ annealing in N2 ambient.
文摘1.0μm gate-length GaAs-based MHEMTs have been fabricated by MBE epitaxial material and contact-mode lithography technology. Pt/Ti/Pt/Au and Ti/Pt/Au were evaporated to form gate metals. Excellent DC and RF performances have been obtained, and the transconductance, maximum saturation drain current density, threshold voltage, current cut-off frequency,and maximum oscillation frequency of Pt/Ti/Pt/Au and Ti/Pt/Au MHEMTs were 502 (503) mS/mm, 382(530)mA/mm,0.1( - 0.5)V,13.4(14.8)GHz,and 17.0(17.5)GHz,respectively. DC-10GHz single-pole double-throw (SPDT) switch MMICs have been designed and fabricated by Ti/Pt/Au MHEMTs. Insertion loss,isolation,input,and out- put return losses of SPDT chips were better than 2.93,23.34,and 20dB.